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Abstract 
  

Genomes encompass all the information necessary to specify the development and function of 

an organism. In addition to genes, genomes also contain a myriad of functional elements that 

control various steps in gene expression. A major class of these elements function only when 

transcribed into RNA as they serve as the binding sites for RNA binding proteins (RBPs), which 

act to control post-transcriptional processes including splicing, cleavage and polyadenylation, 

RNA editing, RNA localization, stability, and translation. Despite the importance of these 

functional RNA elements encoded in the genome, they have been much less studied than genes 

and DNA elements. Here, we describe the mapping and characterization of RNA elements 

recognized by a large collection of human RBPs in K562 and HepG2 cells. These data expand 

the catalog of functional elements encoded in the human genome by addition of a large set of 

elements that function at the RNA level through interaction with RBPs.  

 

  
Highlights: 

• 223 eCLIP datasets for 150 RBPs reveal a wide variety of in vivo RNA target classes. 

• 472 knockdown/RNA-seq profiles of 263 RBPs reveal factor-responsive targets and 

integration with eCLIP indicates RNA expression and splicing regulatory patterns. 

• 78 RNA Bind-N-Seq profiles of in vitro binding motifs reveal links between in vitro and in 

vivo binding and indicate that eCLIP peaks that contain in vitro motifs are more strongly 

associated with regulation. 

• 274 maps of RBP subcellular localization by immunofluorescence indicate widespread 

organelle-specific RNA processing regulation. 

• 63 ChIP-seq profiles of DNA association suggest broad interconnectivity between 

chromatin association and RNA processing. 
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Introduction 
 
RNA binding proteins (RBPs) have emerged as central players in regulating gene expression, 

controlling when, where, and at what rate RNAs are processed, trafficked, translated, and 

degraded within the cell. They represent a diverse class of proteins involved in co- and post-

transcriptional gene regulation1,2. RBPs interact with RNA to form ribonucleoprotein complexes 

(RNPs), governing the maturation and fate of their target RNA substrates. Indeed, they regulate 

numerous aspects of gene expression including pre-mRNA splicing, cleavage and 

polyadenylation, RNA stability, RNA localization, RNA editing, and translation. In fact, many RBPs 

participate in more than one of these processes. For example, studies on the mammalian RBP 

Nova using a combination of crosslinking and immunoprecipitation (CLIP)-seq and functional 

studies revealed that Nova not only regulates alternative splicing, but also modulates poly(A) site 

usage3. Moreover, in contrast to regulation at the transcriptional level, post-transcriptional 

regulatory steps are often carried out in different sub-cellular compartments of the nucleus (e.g. 

nucleoli, nuclear speckles, paraspeckles, coiled bodies, etc.) and/or cytoplasm (e.g. P-bodies, 

endoplasmic reticulum, etc.) by RBPs that are localized within these compartments. These 

regulatory roles are essential for normal human physiology, as defects in RBP function are 

associated with diverse genetic and somatic disorders, such as neurodegeneration, auto-immune 

defects, and cancer4-10. 

 Traditionally, RBPs were identified by affinity purification of single proteins11,12. However, 

several groups have recently used mass spectrometry-based methods to identify hundreds of 

proteins bound to RNA in human and mouse cells13-16. Recent censuses conducted by us and 

others indicate that the human genome may contain between 1,072(ref. 17) and 1,542(ref. 1) RBP-

encoding genes. This large repertoire of RBPs likely underlies the high complexity of post-

transcriptional regulation, motivating concerted efforts to systematically dissect the binding 

properties, RNA targets and functional roles of these proteins. 

 The dissection of RBP-RNA regulatory networks therefore requires the integration of 

multiple data types, each viewing the RBP through a different lens. In vivo binding assays such 

as CLIP-seq provide a set of candidate functional elements directly bound by each RBP. 

Assessments of in vitro binding affinity help understand the mechanism driving these interactions, 

and (as we show) improve identification of functional associations. Functional assays that identify 

targets whose expression or alternative splicing is responsive to RBP perturbation can then fortify 

evidence of function. For example, observation of protein binding by CLIP-seq within introns 
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flanking exons whose splicing is sensitive to RBP levels provides support for the RBP as a splicing 

factor and for the binding sites as splicing regulatory elements. In vivo interactions of RBPs with 

chromatin can also be assayed to provide insight into roles of some RBPs as transcription 

regulators and can provide evidence for co-transcriptional deposition of RBPs on target RNA 

substrates. The regulatory roles of RBPs are also impacted by the subcellular localization 

properties of RBPs and of their RNA substrates. Furthermore, these data resources comprised of 

multiple RBPs profiled using the same methodology and cell lines may be integrated to identify 

factor-specific regulatory modules, and the roles of RBPs in broader cellular regulatory networks, 

through integrated analyses such as those described below. 
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Results  
  

Overview of data and processing 
  

To work towards developing a comprehensive understanding of the binding and function of the 

human RBP repertoire, we used five assays to produce 1,223 replicated datasets for 356 RBPs 

(Fig. 1a,b, Supplementary Data 1,2). The RBPs characterized by these assays have a wide 

diversity of sequence and structural characteristics and participate in diverse aspects of RNA 

biology (Fig. 1). Functionally, these RBPs are most commonly known to play roles in the regulation 

of RNA splicing (98 RBPs, 28%), RNA stability and decay (71, 20%), and translation (70, 20%), 

with 162 RBPs (46%) having more than one function reported in the literature (Supplementary 

Data 1). However, 83 (23%) of the characterized RBPs have no known function in RNA biology 

other than being annotated as binding RNA (Fig. 1b). Although 57% of the RBPs surveyed contain 

well-characterized RNA binding domains [RNA recognition motif (RRM), hnRNP K homology 

(KH), zinc finger, RNA helicase, ribonuclease, double-stranded RNA binding (dsRBD), or 

pumilio/FBF domain (PUM-HD)], the remainder possess either less well studied domains or lack 

known RNA-binding domains altogether (Fig. 1b, Supplementary Data 1). Many RBPs had high 

expression in ENCODE cell lines and across a broad range of human tissues, including ribosomal 

proteins (RPL23A, RPS11, RPS24), translation factors (EIF4H, EEF2), and ubiquitously 

expressed splicing factors (HNRNPC, HNRNPA2B1) among the 10 least tissue-specific RBPs 

(Extended Data Fig. 1a, Supplementary Data 3). However, several other RBPs had highly tissue-

specific expression exhibiting either a pattern of high expression in one or a small number of 

human tissues (e.g., LIN28B, IGF2BP1/3) or being differentially expressed by orders of magnitude 

across several human tissues (e.g., IGF2BP2 and APOBEC3C), indicating that the RNA targets 

and regulatory activity of these RBPs are likely modulated through cell type-specific gene 

expression programs.  

 

Each of the five assays used focused on a distinct aspect of RBP activity: 

  

Transcriptome-wide RNA binding sites of RBPs: We identified and validated hundreds of 

immunoprecipitation-grade antibodies that recognize human RBPs17 and developed enhanced 

CLIP (eCLIP)18. We identified high-quality eCLIP profiles for 120 RBPs in K562 cells and for 103 

RBPs in HepG2 cells, for a total of 150 RBPs (of which 73 were characterized in both cell types) 

(Supplementary Data 4). In sum, this effort identified 844,854 significantly enriched peaks (relative 
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to size-matched input controls for each RBP) that cover 18.5% of the annotated mRNA 

transcriptome and 2.6% of the pre-mRNA transcriptome.  

  

RBP-responsive genes and alternative splicing events: To obtain insight into the functions of 

eCLIP peaks, we used shRNA- or CRISPR-mediated depletion followed by RNA-seq of 237 RBPs 

in K562 and 235 RBPs in HepG2 cells, for a total of 263 RBPs (of which 209 were characterized 

in both cell types) (Supplementary Data 5). Comparison against paired non-target control datasets 

identified 375,873 instances of RBP-mediated differential gene expression involving 20,542 

genes affected upon knockdown of at least one RBP, as well as 221,612 cases of RBP-mediated 

alternative splicing events involving 38,555 alternatively spliced events impacted upon 

knockdown of at least one RBP. In addition to within-batch controls for each experiment, we 

performed batch correction to enable integrated analyses across the entire dataset (Extended 

Data Fig. 2). 

  

In vitro RBP binding motifs: To identify the RNA sequence and structural binding preferences of 

RBPs in vitro, we developed a high-throughput version of RNA Bind-N-Seq (RBNS)19 that assays 

binding of recombinant purified RBPs to pools of random RNA oligonucleotides. In all, we 

identified the binding specificities of 78 RBPs20 (Supplementary Data 6). Short oligonucleotides 

of length k=5 (kmers) highly enriched in RBNS reads clustered into a single motif for about half 

of the RBPs assayed (37/78). The remaining RBPs had more complex patterns of binding, best 

described by two motifs (32/78), or even three or more motifs (9 RBPs). These data also indicate 

that many RBPs are sensitive to the sequence and RNA structural context in which motifs are 

embedded. 

 

RBP sub-cellular localization: Post-transcriptional gene regulation occurs in different intracellular 

compartments. For instance, rRNA maturation and pre-mRNA splicing primarily occur in sub-

regions of the nucleus, whereas mRNA translation and default mRNA decay pathways operate in 

the cytoplasm. To illuminate functional properties of RBPs in intracellular space, we took 

advantage of our validated antibody resource17 to conduct systematic immunofluorescence (IF) 

imaging of 274 RBPs in HepG2 cells and 268 RBPs in HeLa cells, in conjunction with a dozen 

markers for specific organelles and sub-cellular structures (Supplementary Data 1). These data, 

encompassing ~230,000 images and controlled vocabulary localization descriptors, have been 

organized within the RBP Image Database (http://rnabiology.ircm.qc.ca/RBPImage/). 
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RBP association with chromatin: Recent work has suggested that RBP association with chromatin 

may play roles in transcription and co-transcriptional splicing21,22. To generate a large-scale 

resource of chromatin association properties for RBPs, we performed ChIP-seq to identify the 

DNA elements associated with 30 RBPs in HepG2 cells and 33 RBPs in K562 cells for a total of 

37 RBPs (of which 26 were characterized in both cell types) (Supplementary Data 7). These 

experiments identified 792,007 ChIP-seq peaks covering 3.8% of the genome. 

  

 To facilitate integrated analyses, all data for each data type were processed by the same 

data processing pipeline, and consistent, stringent quality control metrics and data standards 

were uniformly applied to all experiments. Although only 8 RBPs were investigated using all five 

assays, 249 of the 352 RBPs (71%) were studied using at least two different assays and 129 

(37%) were subjected to at least three different assays, providing opportunities for integrated 

analysis using multiple datasets. As an example of how these complementary datasets provide 

distinct insights into RNA processing regulation, we considered PTBP3 (also known as Regulator 

of Differentiation 1 / ROD1) (Fig. 1D). Inclusion of PTBP3 exon 2 has been shown to alter start 

codon usage and increase cytoplasmic localization, and we observed by RNA-seq that PTBP3 

exon 2 inclusion was low in control cells but increased upon PTBP1 knockdown, consistent with 

previous studies23. This splicing event is likely directly regulated by PTBP1, as we observed eCLIP 

peaks at the 3’ splice site of PTBP3 exon 2 which contained U-rich motifs shown to bind PTB 

family proteins by RBNS. Intriguingly, we also observe significant binding to PTBP3 exon 10, 

which does not show alternative splicing itself but is orthologous to PTBP1 exon 10 and PTBP2 

exon 11, which are each alternatively spliced in a PTBP1/2-regulated manner to generate 

transcripts targeted for nonsense-mediated mRNA decay24. Thus, it appears that the absence of 

PTBP1 regulation of PTBP3 exon 10 splicing is not due to the loss of PTBP1 binding in this 

paralog. Considering mRNA levels, we observed that knockdown of TIA1 in K562 cells showed a 

1.3-fold decrease in PTBP3 mRNA, and that the PTBP3 3’UTR contained multiple eCLIP peaks 

for TIA1 in K562 cells, many of which overlapped with the TIA1 RBNS motif (UUUUU). This 

expression change paralleled the average change observed for many genes with TIA1 3’UTR 

eCLIP enrichment (see later discussion in Fig. 4). Similar integrated analysis can provide insight 

into mechanisms of cryptic exon repression and many other types of regulation. As an example, 

we observed HNRNPL eCLIP enrichment at a region downstream of a GTPBP2 cryptic exon that 

contains repeats of the top HNRNPL RBNS motif, likely repressing splicing of the exon and 

contributing to production of GTPBP2 mRNA with a full-length open reading frame (Extended 

Data Fig. 1c). 
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Scalable quality assessment and analysis of eCLIP datasets 
To generate the 223 high quality eCLIP datasets, we performed a total of 488 eCLIP experiments, 

each including biological duplicate immunoprecipitations along with a paired size-matched input 

(Fig. 2a, Extended Data Fig. 3-6, Supplementary Data 4, 8, 9 and 10). Quality assessment was 

performed manually using heuristics based on immunoprecipitation validation, library yield, 

presence of reproducible peak or repeat family signal, motif enrichment (for RBPs with known 

binding motifs), and consistency with well-characterized biological functions, yielding 223 eCLIP 

datasets released at the ENCODE Data Coordination Center (https://www.encodeproject.org). 

These manual quality assessments were then used to derive automated metrics that could 

accurately classify quality for 83% of eCLIP datasets (Extended Data Fig. 4). Datasets passing 

manual but not automated quality assessment were released with specific exceptions noted 

(Supplementary Data 8). An additional 50 datasets, which did not meet the stringent ENCODE 

standards but contained reproducible signal and could thus serve as useful entry points for future 

validation, have been deposited at the Gene Expression Omnibus (GSE107768) but were not 

included in the analyses described below (Extended Data Fig. 3c; Supplementary Data 9). We 

note that the eCLIP protocol does not include the direct visualization of protein-associated RNA 

that has been used in previous methods to assess whether RNA bound to co-purified RBPs of 

different size is present, and non-antigen IP of similar sized proteins is not easily detectable18. 

Although we have observed that UV crosslinking and stringent IP wash conditions generally limit 

the identification of indirect interactions, independent validation of peaks and binding properties 

identified by eCLIP through comparison with orthogonal in vitro motifs, knockdown-responsive 

changes, or other data types as described below therefore provides an essential validation to 

identify true binding signal. 

Standard CLIP-seq analyses often identify thousands to hundreds of thousands of 

clusters of enriched read density (Extended Data Fig. 5, Supplementary Data 4). However, we 

previously showed that requiring enrichment in IP versus paired input experiments significantly 

improves specificity in identifying biologically relevant peaks by removing non-specific signal at 

abundant transcripts18. Thus, although data for all clusters identified from IP-only analysis has 

been made available, in this study we required stringent enrichment relative to input (fold-

enrichment ≥ 8 and p-value ≤ 0.001). We further required that significant peaks be reproducibly 

identified across both biological replicates using an approach based off the Irreproducible 

Discovery Rate (IDR) method (Extended Data Fig. 5). Finally, we removed peaks overlapping 57 

‘blacklist’ regions (many of which contain either adapter sequences or tRNA fragments) that show 
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consistent artefactual signal (Supplementary Data 11). Down-sampling analysis indicated that 

peaks were robustly detected at standard sequencing depth even in genes with low expression 

(TPM near or even below 1) (Extended Data Fig. 6).  

Overlaying peaks onto GENCODE transcript annotations, we observed that peaks for 

most RBPs overlapped specific regions within transcripts, consistent with previous functional roles 

of many RBPs (Fig. 2b). Based on the dominant transcript region type bound, we clustered these 

RBPs into 6 “RNA type classes”, which provided reference comparisons for later peak-based 

analyses (Fig. 2b, Extended Data Fig. 7a, Supplementary Data 4). However, we observed that 

uniquely mapped reads represented a minority of the total for many eCLIP datasets, with the 

remainder coming from multi-copy elements including gene families with multiple pseudogenes 

(such as ribosomal RNA or Y RNA), retrotransposons, and other repetitive elements (Extended 

Data Fig. 7b). To quantify this signal accurately, we developed a family-aware mapping strategy 

which enabled quantitation of relative enrichment at mRNA versus other RNA types (Fig. 2c-d). 

Incorporating this approach, we observed clusters of RBPs dominated by rRNA or snRNA signal 

consistent with known functions, as well as unexpected clusters dominated by antisense Alu and 

L1/LINE signal that suggests an underappreciated role for retrotransposable elements encoded 

within protein-coding transcripts (particularly in the antisense orientation) in the global RBP 

binding landscape (Fig. 2e-g, Extended Data Fig. 7c-e).  

 

Saturation of the discovery of RNA processing events and regulatory sites 
The scale of our data enabled us to query the degree to which we have saturated the 

discovery of eCLIP peaks and RBP-associated RNA processing events. In total, 20,542 genes 

were differentially expressed in at least one knockdown experiment, including 92.1% of genes 

expressed in both cell types and 91.8% of those expressed in at least one of the two (Extended 

Data Fig. 8a-c). Similarly, 17,839 genes had a peak in at least one eCLIP dataset, representing 

84.2% of genes expressed in both cell types and 92.0% of those expressed in at least one 

(Extended Data Fig. 8a-c). Only 4,889 genes had eCLIP peaks from and were responsive to 

knockdown of the same RBP, suggesting that a large fraction of knockdown-responsive 

expression changes result from indirect effects, consistent with previous observations that only a 

relatively minor subset of RBPs affect RNA stability (see later discussion and Fig. 4). Similar 

analysis of alternative splicing changes revealed that differentially spliced events were saturated 

to a lesser degree than differentially expressed genes, likely because the transient nature of pre-

mRNA reduces the window for detection by eCLIP, particularly for the many constitutively spliced 

exons that show incomplete inclusion upon knockdown of spliceosomal components. The 
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significant variability observed in splicing event downsampling was driven by over 13,000 splicing 

changes in one knockdown dataset (the RNA helicase and spliceosomal protein AQR25 in K562 

cells), which had nearly 3 times as many changes as the next largest dataset (Extended Data Fig. 

8d).  

Considering eCLIP alone, we observed a total of 25.8 Mb (2.6%) of annotated pre-

mRNA transcripts covered by at least one reproducible eCLIP peak, representing 10.2 Mb 

(18.5%) of exonic and 15.6 Mb (1.7%) of intronic sequence (Extended Data Fig 8e-f). Restricting 

our analysis to genes expressed (TPM>1) in both cell types, 3.4% of annotated intronic sequence 

(2.4% of distal intronic, 4.3% of proximal intronic, and 17.9% of splice site), and 33.5% of 

annotated exonic sequences (39.0% of 5’ UTR, 40.6% of CDS, and 23.3% of 3’ UTR, respectively) 

were covered by at least one peak (Fig. 2g). We found that, although profiling a new RBP often 

resulted in greater increases in covered bases of the transcriptome than did re-profiling the same 

RBP in HepG2 or K562, re-profiling the same RBP in a more distinct cell type (H1 or H9 stem 

cells) yielded even greater increases, suggesting that many additional RBP binding sites remain 

to be detected in cell types distinct from K562 and HepG2 (Extended Data Fig. 8g-i). While these 

results are consistent with previous work suggesting that RNAs are often densely coated by 

RBPs26, it remains to be seen what fraction of these peaks mark regulatory interactions rather 

than constitutive RNA processing. Indeed, many peaks may reflect association of proteins that 

coat or transiently interact with RNAs as part of their basic function, such as interaction of RNA 

Polymerase II component POLR2G with pre-mRNAs, or recognition of splice sites by 

spliceosomal components. 

Next, we evaluated whether RBP regulation is consistent across cell types. We 

observed that RBFOX2 eCLIP peaks with at least 8-fold enrichment in HepG2 cells were also 

typically enriched in K562 cells (average enrichment of 6.2-fold) if the target RNA was expressed 

within a factor of five of the level in HepG2 cells (Fig. 2h). Extending this to all 73 RBPs with eCLIP 

data in both cell types, 65.7%, 64.8%, and 62.7% of peaks in unchanging, weakly, or moderately 

differentially expressed genes, respectively, were enriched by at least 4-fold in the second cell 

type, and often overlapped a reproducible and significant peak call in the other cell type (Fig. 2i, 

Extended Data Fig. 8j-k). In contrast, an average of 46.3% of RBP peaks that showed no 

enrichment in the second cell type occurred in genes with cell type-specific expression (a 3.0-fold 

enrichment), whereas only 21.6% occurred in unchanging, weakly, or moderately differentially 

expressed genes, respectively (a 3.0-fold depletion) (Extended Data Fig. 8l). Thus, these results 

suggest that most RBP eCLIP signal is preserved across cell types for similarly expressed genes, 
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whereas peak discrepancies often reflect cell type-specific RNA expression instead of differential 

binding. 

 

In vivo binding is determined to a substantial extent by in vitro binding specificity 
Binding of an RBP to RNA in vivo is determined by the combination of the protein’s intrinsic RNA 

binding specificity and other influences such as RNA structure and protein cofactors. To compare 

the binding specificities of RBPs in vitro and in vivo, we calculated the raw enrichment (R value) 

of each 5mer in RBNS-bound sequences relative to input sequences and compared these to the 

corresponding enrichments of 5mers in eCLIP peaks relative to randomized locations in the same 

genes (ReCLIP). We focused on 5mers because most proteins analyzed by RBNS contained RRM 

or KH domains, which are known from structural studies to individually bind ~3-5 bases of 

RNA27,28. Significantly enriched 5mers in vitro and in vivo were mostly in agreement, with 15 of 

the 23 RBPs having significant overlap in the 5mers that comprise their motif logos (Fig. 3a, left). 

The top RBNS 5mer for an RBP was almost always enriched in eCLIP peaks of that RBP (Fig. 

3a, center, Extended Data Fig. 9a). For 18 of 21 RBPs in well represented RNA type classes, the 

RBNS motifs explained more of the corresponding eCLIP peaks than of eCLIP peaks of other 

RBPs in the same RNA type class (Extended Data Fig. 9b-d). In most cases, similar degrees of 

enrichment and similar motif logos were observed in eCLIP peaks located in coding, intronic or 

UTR regions, suggesting that RBPs have similar binding determinants in each of these transcript 

regions (Fig. 3a, center; Extended Data Fig. 9e, 10a). Strikingly, the most enriched RBNS 5mer 

occurred in 30% or more peaks for several RBPs including SRSF9, TRA2A, RBFOX2, PTBP3, 

TIA1, and HNRNPC, and for most RBPs at least half of eCLIP peaks contained at least one of 

the top five RBNS 5mers. Therefore, instances of these 5mers provide candidate nucleotide-

resolution binding locations for the RBP (Fig. 3a, right), which have applications including 

identification of genetic variants likely to alter function at the RNA level (see Extended Data Fig. 

4 from Moore et al. ENCYCLOPEDIA Companion manuscript, in revision). When two or more 

distinct motifs were enriched in both RBNS and eCLIP, the most enriched motif in vitro was usually 

also the most enriched in vivo (5 out of 7 cases). These observations are consistent with the idea 

that intrinsic binding specificity observed in vitro explains a substantial portion of in vivo binding 

preferences for most RBPs, with the caveat that most RBNS data are from RBPs that contain 

single-stranded RNA-binding domains. 

For slightly under half of the interrogated RBPs (10/23), the top five RBNS 5mers 

explained fewer than half of the eCLIP peaks. Some of these RBPs appear to have affinities to 

RNA structural features or to more extended RNA sequence elements not well represented by 
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5mers20, while the sequence-specific binding of others may be driven to a large extent by 

interacting proteins. In some cases, RBNS revealed affinity to a subset of the motifs that were 

enriched in eCLIP peaks. For example, C-rich 6mers were most enriched in PCBP2 RBNS data 

and also in PCBP2 eCLIP peaks (Fig. 3b). In this example, and in several others, a subset of 

similar eCLIP-enriched kmers were not enriched at all by RBNS (e.g., the G-rich 6mers in Fig. 

3b). Such “eCLIP-only” motifs, which were often G-, GC-, or GU-rich (Extended Data Fig. 10b), 

may represent RNA binding of other proteins that interact with the targeted RBP – e.g., G-rich 

motifs enriched near RBFOX2 peaks may represent sites bound by HNRNPF, HNRNPH and 

HNRNPM in complex with RBFOX229,30 – or could represent copurification or crosslinking artifacts 

or biases in the composition of genomic sequences located near crosslinked positions31,32. In the 

case of PCBP2, we observed that C-rich motifs but not G-rich motifs were enriched adjacent to 

PCBP2-regulated exons (Extended Data Fig. 11a-b). These observations support C-rich motifs 

but not G-rich motifs as sites of PCBP2-specific regulation. 

 The extent to which strength and mode of binding are reflected in eCLIP read density and 

regulatory activity is not well understood. We focused on regulation of splicing because a large 

proportion of the available cell type/RBP combinations that have knockdown/RNA-seq, eCLIP, 

and RBNS data involved RBPs with known roles in splicing, and splicing changes could be readily 

detected in the knockdown data. For most datasets involving knockdown of known splicing RBPs 

(18/28), eCLIP enrichment to one or more specific regions near alternative exons was associated 

with increased splicing changes upon knockdown of the RBP. In contrast, this association was 

observed for only one of the seven datasets involving RBPs that lacked known splicing functions 

(hypergeometric P<0.05, Extended Data Fig. 11c). To explore the relationship between 

sequence-specific binding and regulation, we classified eCLIP peaks as RBNS+ or RBNS– 

depending on whether they contained the highest-affinity RBNS motif (Supp. Methods). We then 

asked whether these classes of peaks differed in their association with splicing regulation. 

Examining exon-proximal regions commonly associated with splicing regulation, we found that 

RBNS+ eCLIP peaks were associated with stronger repression of exon skipping, with an average 

~25% increase in change of exon inclusion (commonly referred to as change of Percent Spliced 

In, or ΔΨ) than RBNS– peaks (Fig. 3c). Thus, eCLIP peaks that reflect sequence-specific binding 

appear to confer stronger regulation than other eCLIP peaks. Alternatively, such peaks may 

simply have a lower false positive rate, though the fairly stringent peak calling criteria used here 

make this explanation seem less likely. Either way, RBNS motifs can be used to distinguish a 

subset of eCLIP peaks that have greater regulatory activity. The in vitro data were needed to 

make this distinction, because a similar analysis of eCLIP peaks classified by presence/absence 
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of the top eCLIP-only 5mer yielded minimal differences in splicing regulatory activity (Extended 

Data Fig. 11d). Unlike RBP-repressed exons, RBP-activated exons showed only a marginally 

significant (P<0.02) difference between RBNS+ and RBNS– peaks (in the opposite direction), not 

significant in either intronic region (Extended Data Figure 11e). Why a stronger effect should be 

observed for RBP-repressed than RBP-activated exons is not clear, though perhaps RNA binding 

directed by intrinsic RNA affinity may generally involve longer-duration interactions that more 

consistently impact (e.g., repress) recruitment of splicing machinery.  

  

Functional Characterization of RBP Maps 
Analysis of the knockdown/RNA-seq data enables inference of the function of some RNA 

elements identified by eCLIP. First, we considered significant changes in transcript abundance 

identified upon RBP knockdown via RNA-seq (Extended Data Fig. 12-13). Regulation of RNA 

stability, which alters steady-state mRNA levels, can be observed by an increase or decrease in 

mRNA expression upon knockdown of an RBP. To identify potential regulators of RNA stability, 

we compared differentially expressed genes upon RBP knockdown with eCLIP enrichment in 

three regions of mRNAs: 5’UTR, CDS, and 3’UTRs. We observed that eCLIP enrichment for 15 

RBPs (including 4 in both cell types) correlated with increased expression upon knockdown 

whereas eCLIP enrichment for another 15 RBPs correlated with decreased expression (Fig. 4a, 

Extended Data Fig. 14a). Comparing against RBPs of the same binding class (Fig. 2b), the 

targeted RBP showed the greatest enrichment in 14 out of 34 cases and was among the top RBPs 

for most comparisons (Extended Data Fig. 14b-c). 

Correlation between eCLIP and genes with increased expression upon RBP knockdown 

included RBPs with previously identified roles in induction of RNA decay (such as UPF1, XRN2, 

and DDX6) (Fig. 4a, Extended Data Fig. 15a), as well as previously uncharacterized RBPs 

including METAP2, a methionyl aminopeptidase that has been co-purified with polyA-selected 

RNA but has no known RNA processing roles14. METAP2 eCLIP showed an average 3.4-fold 

enrichment in CDS regions, above the 2.4-fold average enrichment of 3’UTR and 1.2-fold 

depletion of intronic regions (Extended Data Fig. 15b-d). We further observed a trend in which 

increasing METAP2 eCLIP fold-enrichment correlated with progressively stronger increases in 

RNA expression upon knockdown, supporting an RNA regulatory role (Fig. 4b).  

 In contrast, the 15 RBPs for which eCLIP enrichment correlated with decreased RNA 

levels following knockdown (Fig. 4a) included stress granule components TIA1, TIAL1, and 

G3BP1 among other RBPs. Surprisingly, although our transcriptome-wide analysis indicated that 

transcripts with 3' UTR TIA1 eCLIP enrichment decreased upon knockdown in K562 cells 
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(suggesting a globally stabilizing role for TIA1) (Fig. 4c), little to no stabilization activity was 

observed for mRNAs with 3' UTR enrichment for TIA1 in HepG2 cells (Extended Data Fig. 15e). 

Using TIA1 RBNS motif content in 3' UTRs rather than eCLIP enrichment, we additionally 

observed cell-type specific enrichment of TIA1 motifs in destabilized transcripts upon KD in K562, 

with no significant effect (though a slight motif enrichment in stabilized genes upon KD) in HepG2 

(Fig. 4d, Extended Data Fig. 15f-g). This distinction is reminiscent of previous studies, which 

indicate that TIA1 can either induce RNA decay when tethered to a 3' UTR33, or stabilize target 

mRNA levels through competition with other RBPs including HuR34. Indeed, we observe that 

although TIA1-knockdown destabilized transcripts in K562 do not show correlated expression 

changes upon knockdown in HepG2, TIA1 eCLIP enrichment is similar between K562 and HepG2 

for these transcripts (Extended Data Fig. 15h-i). Thus, our results provide further evidence that 

TIA1 can regulate mRNA stability through varying regulatory mechanisms that likely involve cell-

type-specific co-factors. 

  

RBP association with splicing regulation 

RBP binding to an exon (or its flanking introns) can regulate exon inclusion or exclusion, 

or alternative 5’ or 3’ splice site usage, through a variety of interactions with the splicing 

machinery35. To consider how RBP enrichment was associated with splicing regulation, we 

identified all significant alternative splicing events from comparison of RBP knockdown versus 

paired non-target control RNA-seq (Extended Data Fig. 16-17). Next, we generated an ‘RNA 

splicing map’ for each RBP36, in which the eCLIP enrichment in IP versus input is identified for all 

exons that increase (or decrease) exon inclusion upon RBP knockdown and then averaged to 

create a meta-exon plot (Extended Data Fig. 18). Comparison of these meta-exon plots can then 

reveal position-dependent regulation. For example, RBFOX2 eCLIP enrichment at the 

downstream proximal intron correlates with exon exclusion upon knockdown of RBFOX2 

(Extended Data Fig. 18), consistent with previous studies of RBFOX2 motif enrichment and CLIP 

binding37. We performed this analysis for all 203 pairings of eCLIP and knockdown/RNA-seq 

performed in the same cell line (139 RBPs total) and we observed a wide variety of RNA maps 

for skipped exons (SEs, also referred to as cassette exons) (Fig. 5a-b, Extended Data Fig. 19a). 

Binding of SR proteins was typically associated with decreased SE inclusion upon knockdown 

while binding of hnRNP proteins was associated with increased SE inclusion upon knockdown, 

consistent with classical models of antagonistic effects of SR and hnRNP proteins on splicing38 

(Extended Data Fig. 19b). We observed that the same RBP across cell types had higher splicing 

map correlation (particularly for knockdown-included exons) than random pairings of RBPs, with 
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SR and hnRNP proteins contributing the majority of highly cross-correlated signals across RBPs 

(Extended Data Fig. 19c-e).  

RBPs that are components of the spliceosome displayed higher association at the 

upstream 5’ and downstream 3’ splice site at cassette exons and alternative exons sensitive to 

RBP-depletion (Fig. 5b, Extended Data Fig. 19f), consistent with previous observations of weaker 

splice sites flanking cassette exons39. When considering non-spliceosomal RBPs, we observed 

that RBP association was higher at cassette-bordering proximal intron regions relative to 

constitutive exons (CEs) that are always included, consistent with previous studies indicating 

increased RBP-mediated regulation of alternative events. Intriguingly, the upstream 5’ splice site 

showed an even greater enrichment than the intronic regions directly flanking the alternative exon 

(Extended Data Fig. 19f), suggesting that the 5’ splice site of the intron upstream of alternative 

exons represents an underappreciated regulatory region for RBPs. 

As an additional control, we compared each knockdown dataset against all eCLIP 

datasets within the same RNA type class (as defined in Fig. 2b). Normalizing against this all-RBP 

background yielded overall similar splicing maps (Extended Data Fig. 20a). Whereas some 

individual RBPs, such as HNRNPC, showed only same-RBP enrichment (Extended Data Fig 

20b), we observed that others indicated potential co-regulation. For example, when considering 

RBFOX2 knockdown-excluded exons we observed an enrichment for QKI slightly downstream of 

the RBFOX2-enriched region (Extended Data Fig. 20c). This appears to reflect complex 

coordination, as RBFOX2 and QKI rarely have enriched eCLIP signal for the same intron 

(Extended Data Fig. 20d) but we observe significant correlation in splicing changes upon RBFOX2 

and QKI knockdown (R2 = 0.19, p = 1.2 x 10-5) (Extended Data Fig. 20e) which matches a previous 

observation in SKOV3ip1 ovarian cancer cells40. In contrast, we observe that TIA1 and TIAL1 

show overlapping enrichment patterns at TIA1 knockdown-included exons (Extended Data Fig. 

20f) despite little co-immunoprecipitation of the other factor (Extended Data Fig. 20g), confirming 

a previous observation showing similar iCLIP binding patterns of TIA1 and TIAL141. However, 

TIA1 and TIAL1 knockdown-responsive exons show little correlation in splicing change (R2 = 0.03, 

p = 0.06) (Extended Data Fig. 20h), suggesting that although they share binding sites they may 

not share regulation at these sites. Thus, our results suggest that this approach may not only 

identify individual splicing regulatory patterns, but also provide insight into the regulatory 

relationships between RBPs.  

 Splicing maps constructed for alternative 5’ (A5SS) and alternative 3’ splice site (A3SS) 

events (Fig. 5c, Extended Data Fig. 21a-b) revealed differential association of spliceosomal 

components (Fig. 5c). We noted that branch point factors SF3B4 and SF3A3 interact at the branch 
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point region ~50 nt upstream of the 3’ splices site. As a control set of native A3SS events, we 

utilized events which have both distal (upstream) and proximal 3’ splice sites in control shRNA 

datasets. When comparing the native set to A3SS events where the distal 3’ splice site has 

increased usage upon depletion of either SF3B4 or SF3A3, we find that average eCLIP 

enrichment for both proteins was decreased at the typical branch point location but increased 

towards the 3’ splice site (Extended Data Fig. 21c-d). Consistent with previous mini-gene studies 

showing that 3’ splice site scanning and recognition originates from the branch point and can be 

blocked if the branch point is moved too close to the 3’ splice site AG42, these results provide 

further evidence that use of branch point complex association to restrict recognition by the 3’ 

splice site machinery may be a common regulatory mechanism43 (Extended Data Fig. 21e).  

 In summary, the RBPs we have surveyed that participate in alternative splicing display a 

wide diversity of regulatory modes. Moreover, although the splicing events differ, the splicing map 

of a given RBP is often highly consistent between cell types. Thus, performing eCLIP and 

knockdown/RNA-seq in a single cell type may be sufficient to elucidate the general splicing rules 

for an RBP, but multiple cell types must be surveyed to identify the full repertoire of direct 

regulatory events.  

 

RBP Association with Chromatin 
It is now broadly accepted that epigenetic marks can affect RNA processing through co-

transcriptional deposition of splicing regulators, and conversely that regulatory RNAs interact with 

and coordinate regulation of chromatin and transcriptional states21,44,45. To explore further 

evidence of DNA association of specific RBPs, we selected RBPs for analysis based on their 

complete or partial localization in the nucleus and on the availability of antibodies and performed 

ChIP-seq to survey 58 RBPs in HepG2 and 45 RBPs in K562 cells for their association with DNA. 

30 of 58 RBPs (52%) profiled by ChIP-seq in HepG2 and 33 of 45 RBPs (64%) in K562 showed 

significant reproducible ChIP-seq signal, with at least 200 (up to more than 50,000) peaks 

(Supplementary Data 7). These RBPs belong to a wide range of functional categories, including 

SR and hnRNP proteins, spliceosomal components and RBPs that have been generally 

considered to function as transcription factors, such as POLR2G and GTF2F1.  

 First, we characterized the RBP ChIP-seq peaks with respect to established chromatin 

features, including DNase I hypersensitive sites and various histone marks. This analysis 

revealed a general preference of RBPs for euchromatin relative to heterochromatin, especially 

gene promoters, although there was some variability among individual RBPs (Fig. 6a, Extended 

Data Fig. 22a). However, when we directly compared ChIP-seq peaks across RBPs we saw little 
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overlap, with high concordance observed only for a small number of specific RBP pairs (Fig. 6b, 

Extended Data Fig. 22b). Collectively, even this moderately sized set of RBPs occupied ~30% of 

all DNase hypersensitive or open chromatin regions and ~70% of annotated gene promoters in 

both cell types. This is suggestive of broad interconnection between RBPs and actively 

transcribed regions in the human genome. Although some RBPs have been shown to also bind 

DNA, we note that this RBP-dependent specificity in ChIP-seq signal may instead reflect 

differential association of these RBPs with a variety of complexes containing transcription factors, 

epigenetic regulators, or other transcriptional machinery that binds DNA directly.  

 Next, we queried the degree to which DNA targets identified from ChIP-seq and RNA 

targets identified by eCLIP overlapped for the same RBP. Considering RBPs with both data types, 

we observed an average overlap of only 6% of eCLIP peaks and 2.4% of ChIP-seq peaks (Fig. 

6c) (Supplementary Data 12). However, higher overlap was observed for a limited set of RBPs 

including the previously characterized DNA Polymerase II-interacting splicing regulator 

RBFOX246. Focusing on non-promoter regions, we find that few RBPs displayed overlap between 

their ChIP and eCLIP signal, suggesting that ChIP signal reflects interactions with DNA or DNA-

binding proteins independent of direct RNA binding for most RBPs (Fig. 6d). However, we 

observed an interesting association between poly(rC) binding proteins HNRNPK and PCBP1/2 

(red box in Fig. 6d) which share a common evolutionary history and domain composition yet 

perform diverse functions47 and showed no clear overlap in ChIP-seq peaks at the global level 

but have overlap in ChIP-seq and eCLIP peaks at gene bodies (Fig. 6c, Extended Data Fig. 22b). 

To further explore the relationship between their RNA and chromatin interactions, we plotted the 

ChIP-seq and eCLIP read density of these three RBPs (as well as U2AF2 as an outgroup control) 

relative to PCBP1, PCBP2, and HNRNPK eCLIP peaks in non-promoter regions (Fig. 6e). We 

found that ChIP-seq signals were typically centered around eCLIP peaks, although HNRNPK (and 

to a lesser degree PCBP1) had a slight shift upstream of the eCLIP peak, which could reflect a 

specific topological arrangement of these potential RBP complexes on chromatin in a manner 

dependent on the direction of transcription (Fig. 6f, left panels). We observed that eCLIP signal 

also generally showed high overlap between these three RBPs but not unrelated spliceosomal 

component U2AF2 (Fig. 6f, right panels). Thus, these data suggest that although ChIP-seq 

signals for many RBPs may simply reflect pre- or co-transcriptional association at promoter 

regions, a subset show overlaps between both DNA and RNA targets within gene bodies that 

likely reflect distinct mechanisms of recruitment. Further work will be required to distinguish which 

of these potential interactions reflect single complexes, more complex recruitment modes, or 

simply reflect co-immunoprecipitation with other RBPs. 
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 Finally, we investigated the potential for correspondence between DNA association and 

downstream effects on gene expression or splicing. First, we observed that the probability of 

ChIP-seq association correlated with increasing RNA expression levels for many RBPs, including 

DNA Polymerase II subunit POLR2G, suggesting that this may be a general property of RBPs 

which associate with the transcriptional machinery (Extended Data Fig. 22c, left). Next, we 

compared the frequency with which genes were differentially expressed upon RBP knockdown 

as a function of whether or not the RBP was chromatin-associated at that gene, using a 

background of randomly selected genes of similar expression level to control for the bias observed 

above. This analysis yielded a small number of RBPs (including HNRNPL and HNRNPLL) which 

showed significant enrichment for differential expression among ChIP-seq targets (Extended Data 

Fig. 22c, center). Performing the parallel analysis for differential alternative splicing events, we 

similarly observed significant overlap for three spliceosomal RBPs (RBM22, U2AF1, and 

SNRNP70) (Extended Data Fig. 22c, right). These data support the hypothesis that association 

of RBPs to chromatin is linked to downstream RNA processing, although the generally low odds 

ratios suggest the presence of additional properties that distinguish regulatory from non-

regulatory interactions. 

 

RBP regulatory features in subcellular space 
As RNA processing steps occur at an array of distinct locations within the cell, 

knowledge of the subcellular localization of each RBP is important to interpret the biological 

function of interactions or regulation observed in other assays. Our systematic 

immunofluorescence imaging screen revealed that RBPs display a broad diversity of localization 

patterns (Fig. 7a), with most factors exhibiting targeting to multiple structures in the nucleus and 

cytoplasm (Fig. 7b). Next, we integrated RBP localization features with other datasets generated 

in this study. To confirm the robustness of these orthogonal datasets, we first considered 

organelles with known roles in processing specific types of RNA. As expected, we observed 

significant overlap between localization of RBPs to nucleoli and eCLIP enrichment at the 45S 

precursor rRNAs and snoRNAs, mitochondria with enrichment at mitochondrial RNAs, and 

nuclear speckles with enrichment at proximal intronic regions (Fig. 7c). Nucleolar RBPs included 

18 factors known to play roles in rRNA processing, including BOP1, UTP18, and WDR3. 

Intriguingly, we observed nucleolar localization for 15 additional RBPs with no annotated RNA 

processing function in humans (Supplementary Table 1), 3 of which showed enriched eCLIP 

signal at the 45S rRNA: AATF and PHF6, which both showed rRNA processing defects in a large-

scale screening effort48, and UTP3, a human ortholog of yeast rRNA processing factor SAS10 
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(Extended Data Fig. 23a). Similarly, 14 out of 18 RBPs (78%) with at least 5-fold enrichment for 

one or more snRNAs exhibited nuclear speckle localization, whereas only 51% of all RBPs with 

both eCLIP and immunofluorescence data in HepG2 cells colocalized with speckles (p = 0.016 

by Fisher Exact test). Focusing specifically on the nuclear to cytoplasmic ratios for each RBP, we 

observed a significant shift towards eCLIP signal at unspliced transcripts for nuclear RBPs, 

whereas cytoplasmic RBPs were enriched for spliced transcripts (Extended Data Fig. 23b-c). We 

also observed similar correspondence between RBP localization and altered RNA processing 

upon RBP knockdown. For example, analysis of splicing changes associated with RBP depletion 

revealed that speckle-localized RBPs impact larger numbers of splicing events compared to non-

speckle associated proteins (Extended Data Fig. 23d), consistent with key roles of nuclear 

speckles in organization and regulation of the splicing machinery49. 

Focusing on localization to specific cytoplasmic organelles, we noted that 42 RBPs 

exhibited localization to mitochondria, an organelle with unique transcriptional and RNA 

processing regulation50. These mitochondrial-localized RBPs shared high overlap with RBPs with 

significant eCLIP enrichment on mitochondrial RNAs on either the Heavy (H) strand (QKI, 

TBRG4), Light (L) strand (GRSF1, SUPV3L1), or both strands (FASTKD2, DHX30), and 

mitochondrial localization by immunofluorescence was generally associated with significantly 

increased eCLIP enrichment on mitochondrial RNAs (Fig. 7d-e, Extended Data Fig. 23e). Next, 

we focused on DHX30, which is essential for proper mitochondrial ribosome assembly and 

oxidative phosphorylation51. Intriguingly, in addition to widespread association with many 

mitochondrial transcripts consistent with previous RIP-seq findings51 (Extended Data Fig. 23f), we 

observed dramatic enrichment at an unannotated region which has strong potential to form a 

stem-loop structure and is located on the mitochondrial H-strand downstream of all annotated 

genes and just upstream of the replication D loop (Fig. 7f). We further observed that DHX30 

knockdown resulted in increased expression of nearly all H-strand transcripts, but decreased 

expression of L-strand transcript ND6 (Fig. 7g). As the termination signal for mitochondrial H-

strand transcription has remained elusive, it is tempting to speculate that this site of DHX30 

association could mark such a signal. These examples illustrate how intracellular localization of 

RBPs can be used as a powerful feature, in combination with binding and loss-of-function data, 

to infer aspects of post-transcriptional regulation that occur in different cellular compartments and 

organelles.  
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Discussion 
 

 Our study represents the largest effort to date to systematically study the functions of 

human RBPs using integrative approaches. The resulting catalog of functional RNA elements 

substantially expands the repertoire of regulatory components encoded in the human genome. 

While the impact of DNA binding proteins mostly culminates in effects on gene expression levels, 

RBP function encompasses a broader range of activities. RBP functions extend outside the 

nucleus and into the cytoplasm and organelles, contributing to multiple paths by which RNA 

substrates are altered (splicing, RNA editing/modification, RNA stability, localization, translation), 

expanding transcriptome and proteome complexity. We demonstrate the effectiveness of 

combining in vivo maps of RNA binding sites identified with eCLIP with orthogonal approaches, 

such as in vitro evaluation of RNA affinity for the same RBPs, chromatin association by ChIP-seq, 

and functional assessment of transcriptome changes by RBP depletion and RNA-seq. At the 

molecular level, we confirm that in vivo and in vitro preferences are highly correlated for RBPs, 

and show that eCLIP peaks containing motifs reflective of intrinsic RNA affinity are more predictive 

of regulation. We confirm, using unbiased genome-wide analyses, that SR and hnRNP proteins 

have broadly antagonistic effects on alternative splicing. Moreover, we implicate the upstream 5’ 

splice sites of cassette exons in splicing regulation and extend previous findings that alternative 

3’ splice site choice results from an “AG” scanning process that initiates with branch point 

recognition. We also implicate an RNA structure bound by an RBP in processing of mitochondrial 

transcripts, and elucidate new RNA splicing maps for many RBPs. Furthermore, our data provide 

the first systematic investigation of chromatin-associated gene regulation and RNA processing at 

the level of RBP-nucleic acid interactions. At the cellular level, immunofluorescence analysis with 

our extensive repository of RBP-specific antibodies place these molecular interactions within 

particular subcellular contexts. We confirm localization of many RBPs to nuclear speckles, 

mitochondria and other compartments, and identify many new proteins resident at these sites, 

emphasizing the necessity of localization data for interpreting RBP-RNA regulatory networks. 

 Here, we have surveyed the in vivo binding patterns of 150 RBPs, comprising the products 

of roughly 10% of the human genes predicted to encode proteins that interact directly with RNA. 

Within K562 and HepG2 cells, our observation that additional mapping of new RBPs continues to 

identify new RBP-associated regions argues that expansion of these approaches to additional 

RBPs will be particularly informative. Additionally, while we observe that in vivo binding patterns 

are highly consistent across genes expressed similarly in our two cell lines assayed (K562 and 

HepG2), our data indicates that mapping of previously characterized RBPs in drastically different 



Van Nostrand et al. 

 21 

cell types with highly distinct transcriptomes (particularly embryonic stem cells, post-mitotic cells 

such as neurons and muscle cells, or human tissues) will undoubtedly yield new discoveries. 

Additionally, RNA processing is dynamically regulated during acute or chronic environmental 

influences such as stress, as new binding sites may arise from both environmental changes in 

RBP or RNA concentrations, as well as from changes in post-translational modifications, binding 

partners, or subcellular distribution of RBPs. Thus, studying RBP subcellular localization and 

RBP-RNA substrate regulation under these conditions has potential to reveal new biology.  

 We expect that the data reported here will provide a useful framework upon which to build 

analyses of other aspects of RNA regulation, such as microRNA processing52, RNA editing and 

modifications such as pseudouridylation and m6A methylation, translation efficiency, and mRNA 

half-life measurements. We have yet to integrate in vivo RNA structure probing data to evaluate 

how RBP-mediated RNA processing are influenced by local53 and long-range RNA structures54. 

As we continue to embark on comprehensively characterizing all functional RNA elements, 

genome-scale CRISPR/Cas9 genome-editing55 and RNA modulation56 technologies will 

ultimately provide opportunities to study the impact on cellular and organismal phenotypes 

resulting from disruption of these RNA elements. 
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Methods 
 
General information 
Raw and processed datasets are accessible using accession identifiers provided in 

Supplementary Data 2 or can be found using the following publication file set accession identifiers 

at the ENCODE Data Coordination Center (https://www.encodeproject.org): eCLIP 

(ENCSR456FVU), knockdown RNA-seq (HepG2: ENCSR369TWP; K562: ENCSR795JHH; 

secondary analysis files including DEseq, rMATS, MISO, and CUFFDIFF output: ENCSR413YAF; 

batch corrected gene expression and splicing analysis: ENCSR870OLK), RBNS 

(ENCSR876DCD), and ChIP-seq (ENCSR999WIC). In addition to the methods described below, 

expanded experimental and computational protocols are linked to each experiment on the 

ENCODE DCC (https://www.encodeproject.org). All analyses in this manuscript used the hg19 

genome annotation and GENCODE v19 transcript annotations (unless otherwise noted), with 

hg38 processed data available at the ENCODE DCC. 

 

RNA binding protein annotations and domains 
RBPs were chosen from a previously described list of 1072 known RBPs, proteins containing 

RNA binding domains, and proteins characterized as associated with polyadenylated RNA, based 

on the availability of high quality antibodies17. Annotation of RBP function was performed by 

integration of published literature, with manual inspection of references for less well-established 

annotations. Annotation of RNA binding domain presence was determined by UniProt Domain 

Descriptions, and a database of cell-essential genes was obtained from published high-

throughput CRISPR screening efforts57. 

 

eCLIP - experimental methods 
Antibodies for eCLIP were pre-screened using a set of defined metrics17. A ‘biosample’ of HepG2 

or K562 cells was defined as a batch of cells starting from a single unfrozen stock, passaged for 

less than 30 days under standard ENCODE reference conditions, and validated for high viability 

and non-confluent at the time of crosslinking. All cells within a biosample were pooled and UV 

crosslinked on ice at 400 mJoules/cm2 with 254 nm radiation. The biosample was then split into 

20 million cell aliquots for eCLIP experiments. 

eCLIP experiments were performed as previously described in a detailed Standard 

Operating Procedure18, which is provided as associated documentation with each eCLIP 

experiment on the ENCODE portal (https://www.encodeproject.org/documents/fa2a3246-6039-



Van Nostrand et al. 

 23 

46ba-b960-17fe06e7876a/@@download/attachment/CLIP_SOP_v1.0.pdf). Briefly, 20 million 

crosslinked cells were lysed and sonicated, followed by treatment with RNase I (Thermo Fisher) 

to fragment RNA. Antibodies were pre-coupled to species-specific (anti-Rabbit IgG or anti-Mouse 

IgG) Dynabeads (Thermo Fisher), added to lysate, and incubated overnight at 4˚C. Prior to 

immunoprecipitation (IP) washes, 2% of sample was removed to serve as the paired input sample. 

For IP samples, high- and low-salt washes were performed, after which RNA was 

dephosphorylated with FastAP (Thermo Fisher) and T4 PNK (NEB) at low pH, and a 3’ RNA 

adapter was ligated with T4 RNA Ligase (NEB). 10% of IP and input samples were run on an 

analytical PAGE Bis-Tris protein gel, transferred to PVDF membrane, blocked in 5% dry milk in 

TBST, incubated with the same primary antibody used for IP (typically at 1:4000 dilution), washed, 

incubated with secondary HRP-conjugated species-specific TrueBlot antibody (Rockland), and 

visualized with standard enhanced chemiluminescence imaging to validate successful IP. 90% of 

IP and input samples were run on an analytical PAGE Bis-Tris protein gel and transferred to 

nitrocellulose membranes, after which the region from the protein size to 75 kDa above protein 

size was excised from the membrane, treated with Proteinase K (NEB) to release RNA, and 

concentrated by column purification (Zymo). Input samples were then dephosphorylated with 

FastAP (Thermo Fisher) and T4 PNK (NEB) at low pH, and a 3’ RNA adapter was ligated with T4 

RNA Ligase (NEB) to synchronize with IP samples. Reverse transcription was then performed 

with AffinityScript (Agilent), followed by ExoSAP-IT (Affymetrix) treatment to remove 

unincorporated primer. RNA was then degraded by alkaline hydrolysis, and a 3’ DNA adapter was 

ligated with T4 RNA Ligase (NEB). qPCR was then used to determine required amplification, 

followed by PCR with Q5 (NEB) and gel electrophoresis to size-select the final library. Libraries 

were sequenced on either the HiSeq 2000, 2500, or 4000 platform (Illumina). Each ENCODE 

eCLIP experiment consisted of IP from two independent biosamples, along with one paired size-

matched input (sampled from one of the two IP lysates prior to IP washes). 

 

Experimental quality control of eCLIP experiments 

eCLIP experiments for the ENCODE project were performed using two biological replicates, 

paired with a size matched input control subsampled from one of the two replicate samples 

(Extended Data Fig. 3a). Prior to sequencing, we utilized two metrics for assessing the quality of 

eCLIP experiments: successful immunoprecipitation of the desired RBP, and successful library 

generation and sequencing.  

First, we required successful immunoprecipitation of the targeted RBP (assayed by IP-

western blot analysis). This prerequisite first requires the identification of a RBP-specific 
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immunoprecipitation-grade antibody, which we previously addressed by screening over 700 

antibodies to identify 438 “IP-grade” antibodies against 365 RBPs in K562 cells17. Using these 

and other RBP antibodies validated by the RNA community, we performed 488 eCLIP 

experiments in K562 and HepG2 cell lines and observed successful immunoprecipitation during 

the eCLIP procedure for 400 (82%). 51 out of 270 (19%) and 37 out of 218 (17%) experiments 

gave failed IP-western blot results in K562 or HepG2 respectively, indicating either potential 

sensitivity to enzymatic steps and additional buffer exchanges performed during the eCLIP 

procedure, or a lack of expression in HepG2 cells (Extended Data Fig. 3b-c). IP-western images 

are provided for each ENCODE eCLIP experiment as part of the antibody metadata available at 

https://www.encodeproject.org. 

Next, we assessed the quality of the amplified eCLIP sequencing library, as failure to 

obtain high-quality amplified libraries from both replicates can indicate a failed experiment, lack 

of RNA binding, or lack of RBP-RNA crosslinking. First, we abandoned 15 (4%) experiments that 

generated adapter-only sequencing libraries in either replicate. Next, we considered library 

complexity, defined as the fraction of unique RNA fragments relative to PCR duplicated fragments 

or other artifacts contained. Although library complexity is easily empirically calculated after 

sequencing and data processing, a quantitative metric for library complexity that can be applied 

prior to sequencing enables rapid culling of poor quality experiments and could help guide a 

desired sequencing depth by estimating an upper bound on the number of recovered RNA 

fragments. We previously introduced the extrapolated CT (eCT) metric that estimates the number 

of PCR cycles needed to obtain sufficient material for sequencing. This metric had appealing 

characteristics, as it was RBP-specific, showed high correlation with PCR duplication rate, and 

could be directly compared against eCLIP experiments performed with IgG isotype controls or 

antibodies in null cell lines18,58. 

However, although the initial eCT calculation assumed an idealized 2-fold amplification 

rate per PCR cycle, we observed that this rate is frequently lower in practice. To properly estimate 

PCR efficiency during eCLIP, we noted that at our standard sequencing depths some experiments 

had saturated the discovery of unique fragments, which enabled us to accurately estimate the 

total number of pre-PCR unique fragments for these datasets. Using 6 datasets with a PCR 

duplication rate of greater than 90%, we observed that the best fit between the number of 

observed unique fragments and the estimated number of unique fragments occurred at a PCR 

efficiency of 1.84 (Extended Data Fig. 3d-e). We therefore defined an accurate-eCT (a-eCT) as 

the eCT calculated with 1.84-fold amplification per cycle instead of 2-fold.  



Van Nostrand et al. 

 25 

To validate the a-eCT metric, we considered datasets that were beginning to saturate 

(PCR duplication rate greater than 60%). We observed that a-eCT showed strong predictive 

power for the number of unique RNA fragments observed (R2 = 0.46, p < 7.1 × 10-38) (Extended 

Data Fig. 3f), an improvement on the prior eCT metric (MSE 0.19 versus 0.86), confirming that a-

eCT provides a robust estimate of library complexity (Extended Data Fig. 3g). Thus, a-eCT 

enables prediction of unique fragments prior to sequencing and indicates that eCLIP of distinct 

RBPs can yield a range from hundreds of thousands to billions of unique fragments (Extended 

Data Fig. 3h). 

Next, we compared a-eCT against a manual annotation of experiment quality. We 

observed that experiments that pass manual quality assessment have a significantly lower a-eCT 

than experiments that failed manual quality assessment with mean a-eCTs of 13.3 versus 14.4 

respectively (Extended Data Fig. 3i, students t-test; p < 10-7). Low a-eCT (corresponding to a 

highly complex library) did not always indicate high-quality eCLIP datasets, with failures due to 

poor reproducibility, lack of significant binding signal, and other failure modes. However, a high 

a-eCT value was a strong predictor of failure, typically due to a lack of the required number of 

unique fragments to produce reproducible peaks. To establish a maximum a-eCT threshold 

beyond which data are unreliable, we observed that the mean a-eCT for IgG control eCLIP 

experiments (which only immunoprecipitate background RNA) was 19.6. With that threshold 

applied, 21 out of 24 datasets with an a-eCT > 19.6 also independently failed manual QC. In all 

datasets examined no successful experiment had an a-eCT > 20.7, while there were still 9 

experiments that did not pass manual quality control that had a higher a-eCT (Extended Data Fig. 

3i). 

In total, 331 out of 400 (83%) experiments had higher yield than this IgG-only value in both 

replicates, indicating successful immunoprecipitation of significant protein-bound RNA in the 

majority of experiments (Extended Data Fig. 3j). As we did observe a small number of high-quality 

datasets with a-eCT values above this cutoff (typically RBPs with high specificity for a single or 

small number of RNA transcripts), we queried experiments with high a-eCT values with low-depth 

sequencing prior to full analysis and abandoned 36 such experiments which showed no significant 

binding specificity, leaving 349 datasets for analysis (Extended Data Fig. 3c). 

 

eCLIP - data processing and peak identification 
Processing of raw eCLIP sequencing data is complex, as adapter sequences, double-adapter 

ligation products, retrotransposable elements and other multi-copy sequences, PCR duplicates, 

and underlying differences in RNA abundances all contribute to false negatives and false positives 
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at both the read mapping and peak identification stages. To address these issues, we developed 

a rigorous standard eCLIP processing and analysis pipeline that was previously published18 and 

is provided (including description of steps as well as commands run) as a ‘Pipeline Protocol’ 

attached to each eCLIP dataset available on the ENCODE website at 

https://www.encodeproject.org/documents/3b1b2762-269a-4978-902e-

0e1f91615782/@@download/attachment/eCLIP_analysisSOP_v2.0.pdf (Extended Data Fig. 

5a). 

Briefly, sequencing reads are first demultiplexed using dual indices with standard tools 

provided by Illumina. Next, reads were further demultiplexed based on in-line barcodes (present 

in read 1) (Supplementary Data 13). At this step, a unique molecular identifier (either N5 or N10) 

was removed from the beginning of read 2 and saved for use at the later PCR duplicate removal 

step. Next, potential adapter sequences were removed using cutadapt (v1.8.1), performed in two 

steps to properly remove non-full length adapter sequences we observed to drive artifact peak 

identification. At this step, reads with less than 18 bases were removed from further analysis. 

Next, we mapped reads using STAR (2.4.0i)59 against a database of repetitive elements (derived 

from RepBase (18.05)60 with the addition of elements including the 45S ribosomal RNA 

precursor), and removed reads with identified mapping (an independent method was derived to 

quantify mapping to repetitive elements, as described below). Reads were then mapped against 

the human genome using STAR (v 2.4.0i), requiring unique mapping (all analyses described in 

this manuscript used mapping to GRCh37 and GENCODE v19 annotations, but mapping to 

GRCh38 and GENCODE v24 annotations were also deposited at the ENCODE portal). PCR 

duplicate reads were then identified as those with the same mapped start position and unique 

molecular identifier and were removed using custom scripts to obtain unique fragments. Read 

clusters were identified using CLIPper54, which applies spine-fitting to identify clusters of enriched 

read density above local, transcript (both pre-mRNA and mRNA), and whole-genome 

background. Finally, clusters identified in IP samples were compared against paired size-matched 

input to obtain significantly enriched peaks. An average of 6.9% of clusters were significantly 

enriched, although this was highly variable across the 223 datasets (Extended Data Fig. 5b). The 

number of significantly enriched peaks was highly correlated between replicates, indicating the 

capture of RBP-specific biological signal (Extended Data Fig. 5c) (Supplementary Data 4). 

To identify reproducible and significantly enriched peaks across biological replicates, we 

used a modified Irreproducible Discovery Rate (IDR) method (Extended Data Fig. 5d). IDR 

requires that peaks are ranked by an appropriate metric, but we found undesirable results ranking 

peaks by either significance (due to the dependence on underlying expression) or fold-enrichment 
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(due to the large variance of fold-enrichment when few reads are observed in input). Thus, we 

adapted relative entropy to better estimate the strength of binding in IP relative to input by defining 

the relative information content of a peak as 𝑝" × 𝑙𝑜𝑔'	(
*+
,+
), where pi and qi are the fraction of total 

reads in IP and input respectively that map to peak i. To confirm that this metric captures true 

binding signal, we considered the RBFOX2 eCLIP dataset in HepG2. We observed 14,595 

reproducible clusters when we ranked by fold enrichment, whereas 32,431 clusters were 

reproducible when we ranked by information content (Extended Data Fig. 5e). Given the 

increased number of reproducible clusters detected, we used information content to perform 

standard IDR analysis to identify reproducibly bound regions61. We then identified the set of non-

overlapping peaks from both replicates that maximized information content to define a final set of 

reproducibly enriched peaks that corresponded to CLIPper-identified regions (Extended Data Fig. 

5d). Unless otherwise noted, the final set of reproducible and significant peaks was identified by 

requiring that the replicate-merged peak meet an irreproducible discovery rate cutoff of 0.01 as 

well as p-value ≤ 0.001 and fold-enrichment ≥ 8 (using the geometric mean of log2(fold-

enrichment) and –log10(p-value) between the two biological replicates). Finally, 57 ‘blacklist’ 

regions were identified which we observed to be common artefacts across multiple datasets and 

lacked normal peak shapes (manual inspection indicated these often contain either adapter 

sequences or tRNA fragments) (Supplementary Data 11). IDR peaks overlapping these blacklist 

regions were removed to yield the final set of reproducible peaks used in all analyses in this 

manuscript (unless otherwise indicated) (Supplementary Data 4). This method revealed that an 

average of 53.1% of peaks identified as significantly enriched in individual replicates were 

significant and reproducible, indicating high reproducibility for most experiments (Extended Data 

Fig. 5f). Furthermore, the number of reproducible peaks identified upon profiling the same RBP 

in K562 and HepG2 cells was highly correlated, providing further validation that this approach 

reproducibly captures RBP-specific signal (Extended Data Fig. 5g). 

 Annotation of peaks was based on overlap with GENCODE v19 transcripts. If a peak 

overlapped multiple annotation types within a single annotated gene (across one or several 

isoform annotations), the peak annotation was chosen in the following priority order: tRNA, 

miRNA, miRNA-proximal (within 500 nt), CDS, 3’UTR, 5’UTR, 5’ splice site (within 100nt of exon), 

3’ splice site (within 100nt of exon), proximal intron (within 400nt of splice site region), distal intron 

(within 400nt of splice site region), followed by noncoding exonic. If the peak overlaps multiple 

gene annotations, the final annotation was chosen as follows: tRNA, miRNA, CDS, 3’UTR, 5’UTR, 

miRNA-proximal, noncoding exonic, 5’ splice site, 3’ splice site, proximal intron, distal intron. To 

determine RBP clusters, the fraction of peaks annotated to each class out of the total number of 
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peaks was calculated, and hierarchical clustering was performed in MATLAB (2018a) using 

correlation distance and average linkage. Clusters were obtained by cutting the tree at 6 clusters 

(chosen by comparing the sum of squared error between each dataset and the mean of all 

datasets within the cluster containing that dataset, which showed a leveling off after 6 clusters 

(Extended Data Fig. 7a)). 

 

Quantitation of eCLIP signal at multi-copy and other repetitive elements. 
 A separate pipeline was developed to quantify enrichment for retrotransposable and other 

multi-copy elements. A database of multicopy elements was generated, including 5606 transcripts 

obtained from GENCODE v19 covering 34 abundant non-coding RNAs including rRNA, snRNA, 

and vault RNAs as their pseudogenes, 606 tRNA transcripts obtained from GtRNAdb (including 

versions with both genome flanking sequences and including the canonical CCA tail)62, 705 

human repetitive elements obtained from the RepBase database (v. 18.05)60, 501 60-mer 

sequences containing simple repeats of all 1 to 6-nt k-mers, and the rRNA precursor transcript 

NR_046235.1 obtained from GenBank. Each transcript was assigned to one of 185 families of 

multi-copy elements (e.g. RNA18S, Alu, antisense Alu, Simple Repeat, etc.). Within each family, 

transcripts were given a priority value, with primary transcripts prioritized over pseudogenes.  

 Post-adapter trimming paired end sequencing reads were mapped to this repetitive 

element database using bowtie2 (v. 2.2.6) with options “-q --sensitive -a -p 3 --no-mixed –reorder” 

to output all mappings. Read mappings were then processed according to the following rules. 

First, for each read pair only mappings with the lowest mismatch score (least number of 

mismatches and insertions or deletions) were kept. Next, for equally scoring mappings within a 

repeat family described above, the mapping to the transcript with the highest priority was identified 

as the ‘primary’ match. Only read pairs mapping to a single repeat family were considered, 

whereas read pairs mapping with equal score to multiple repeat families were discarded from 

quantitation at this stage. Mapping to the reverse strand of a transcript was considered distinct to 

forward strand mapping, such that each family paired with a separate antisense family composed 

of the same transcripts with the same priority order (except for simple repeats, which were all 

combined into one family). 

 Next, repeat mappings were integrated with unique genomic mappings identified from the 

standard eCLIP processing pipeline (described above) as follows. If a read pair mapped both 

uniquely to the genome as well as to a repetitive element, the mapping scores were compared; if 

the unique genome mapping was more than 2 mismatches per read (24 alignment score for the 

read pair) better than to the repeat element, the unique genomic mapping was used; otherwise, 
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it was discarded and only the repeat mapping was kept. Next, PCR duplicate removal was 

performed (similar to the standard eCLIP processing pipeline) by comparing all read pairs based 

on their mapping start and stop position (either within the genome or within the mapped primary 

repeat) and unique molecular identifier sequence, removing all but one read pair for read pairs 

sharing these three values. Finally, the number of post PCR-duplicate removal read pairs 

mapping to each multi-copy family was counted in both IP and paired input sample and normalized 

for sequencing depth (counting post-PCR duplicate read pairs from both unique genomic mapping 

as well as repeat mapping). Additionally, to better quantify signal to RepBase elements, 

RepeatMasker-identified repetitive elements in the hg19 genome were obtained from the UCSC 

Genome Browser. Element counts for RepBase elements were determined as the sum of repeat 

family-mapped read pairs plus uniquely genome mapped read pairs that overlapped 

RepeatMasked RepBase elements. After removing repeat-mapping elements, remaining reads 

were grouped and quantified based on transcript region annotations (CDS, 3’UTR, 5’UTR, 

proximal or distal intronic, non-coding exonic, intergenic, or antisense to GENCODE transcripts). 

Significance was determined by Fisher’s Exact test, or Pearson’s Chi-Square test where 

appropriate.  

To summarize overall eCLIP signal, we applied the relative information content metric. 

Relative information content of each element in each replicate was calculated as 𝑝" × 𝑙𝑜𝑔'	(
*+
,+
), 

where pi and qi are the fraction of total reads in IP and input respectively that map to element i. A 

merged relative information for both replicates was calculated by defining pi as the average 

fraction of total reads between the two biological replicates. To cluster datasets, dimensionality 

reduction was performed on element relative information from the combination of both replicates 

using the tSNE algorithm in MATLAB (2018a) with cosine distance, ‘exact’ algorithm, and 

perplexity = 10. To identify clusters, clustering was performed in using the DBSCAN (v1.0) 

MATLAB package, with options epsilon = 3 and MinPts = 2.  

 
Effect of sequencing depth on eCLIP peak identification 

How deeply to sequence a CLIP-seq dataset is a major consideration (particularly at large scale), 

as samples must be sequenced sufficiently to robustly detect true binding signals while minimizing 

experimental cost. To query whether the ENCODE eCLIP datasets were sequenced to sufficient 

depth, we considered two questions: first, how does sequencing depth affect identification of true 

binding sites, and second, how many reads are required to detect binding sites in any gene when 

accounting for variability in gene expression. 
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First, we asked whether peaks discovered at deeper sequencing depths were still likely to 

be biologically relevant. To do this we looked at RBFOX2, which is known to bind to the GCAUG 

motif. Overall, we observed significant enrichment for RBFOX2 binding to its motif, with 36% of 

RBFOX2 peaks overlapping the motif versus a mean of 6% of peaks overlapping the motif in all 

other datasets (Extended Data Fig. 6a). We then down-sampled the unique genomic fragments, 

re-called peaks, and asked how many peaks discovered at each down-sampling step overlapped 

the RBFOX2 motif. We observed that peaks discovered using only 10% of unique genomic 

fragments showed the highest motif overlap (38% on average), whereas peaks that were only 

discovered when going from 90% to 100% of unique genomic fragments were less likely to contain 

GCAUG (27% on average) (Extended Data Fig. 6b). Although this suggests that signal to noise 

is highest among the most abundantly covered peaks, we note that later discovered peaks were 

still 3.0- to 7.4-fold enriched above non-RBFOX2 datasets, indicating they still contain significant 

true binding signal (Extended Data Fig. 6b). Supporting this, we observed that conservation of 

later-discovered peaks was similar to those discovered earlier with a mean phastcons 

conservation score of 0.136 versus 0.132 (Extended Data Fig. 6c). Considering an independent 

dataset, PRPF8, we observed similar results when testing its known association with the 5’ splice 

site: although peaks discovered at low sequencing depth were less enriched for true signal, we 

continued to see significant true positive signal throughout the range of down-sampling, indicating 

that it is true that deeper sequencing allows for the continued discovery of high quality peaks 

(Extended Data Fig. 6d-e). 

Second, we considered the identification of peaks as a function of transcript abundance. 

To explore if there was a correlation between sequencing depth and the discovery of peaks in 

lowly expressed genes, we calculated the correlation between gene expression and the number 

of reads in each peak for RBFOX2. We observed that lowly expressed genes had fewer reads 

per peak (as expected), whereas highly expressed genes displayed a large variation in the 

number of reads per peak, with only a weak correlation overall for both RBFOX2 (R2 = 0.03) 

(Extended Data Fig. 6f). All other RBPs showed a similar week correlation (mean R2 = 0.13) 

(Extended Data Fig. 6g). Next, we asked whether peaks at lowly expressed genes could be 

detected at standard sequencing depths. Surprisingly, we found that lowly expressed genes 

(defined as those with TPM < 1) need on average only 670,000 unique genomic fragments to 

allow for detection of a peak in the gene, and this estimate was similar when varying the fraction 

of peaks required to be discovered or TPM thresholds (Extended Data Fig. 6h-j). As ENCODE 

eCLIP datasets have a mean sequencing depth of over 4.3 million unique genomic fragments, 
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these results suggest that an inability to detect peaks on lowly expressed genes is not a major 

concern in eCLIP data sequenced to standard depths.  

Our analysis above indicates that continued sequencing until fragment saturation can 

recover true peaks even at extremely high read depths. However, sequencing until fragment 

saturation is not typically economically reasonable. Thus, we set out to quantify diminishing 

returns upon deeper sequencing to identify whether we were observing saturation of detected 

peaks at typical eCLIP sequencing depths (Extended Data Fig. 6k-m). First, we developed a 

metric to quantify the diminishing returns of deeper sequencing in eCLIP datasets. Considering 

the discovery of significant peaks, we queried how many peaks were newly discovered when 

comparing peaks observed when 90% or 100% of fragments in a dataset were used to identify 

peaks. We observed that 67% of experiments passing manual QC saturated the discovery of 

significant peaks (defined as the discovery of fewer than 5% new peaks in the above metric), 

suggesting that simple peak detection was saturating for most but not all high-quality datasets 

(Extended Data Fig. 6k). 

Next, we considered whether binding information by total information content was 

saturating even when peak discovery was not. Summing the total information content across all 

peaks, we observed that information recovered saturated for 97% of manually accepted datasets 

(using the same 5% or less discovery metric between 90% and 100% of fragments used to call 

peaks in a dataset) (Extended Data Fig. 6k). Exploring downsampling experiments further, we 

found that 90% of all eCLIP datasets that passed manual quality assessment had saturated 

information discovery by 8.5M unique fragments (corresponding to 4.3M unique genomic 

fragments) (Extended Data Fig. 6l-m). Thus, these results suggest that although additional peaks 

can be identified, the majority of peak information content is already captured at current 

sequencing depths for the majority of eCLIP experiments described here. 

 

Automated QC Metrics to verify data quality 

We next developed a set of metrics to assess the quality of ENCODE eCLIP experiments. We 

ultimately arrived at two metrics for individual replicates (a minimal unique fragment cutoff, and a 

“total information in peaks” cutoff) as well as a third metric to assess reproducibility across the 

two biological replicates (Extended Data Fig. 4a). To evaluate these metrics, we used manual 

quality assessment of datasets to define a reference set of high- and low-quality eCLIP datasets. 

The number of unique fragments per dataset varies widely, depending on library 

complexity and sequencing depth (as described above). We observed that a required number of 

1.5M unique fragments maximized the predictive power for datasets passing manual quality 
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assessment (f-score = 0.79) (Extended Data Fig. 4b). Only 7 of 446 manually passed datasets 

do not meet this threshold: two (TBRG4, PABPC4) are not yet saturated and thus could be 

rescued by re-sequencing, whereas the 5 other datasets (one replicate of SLBP, two replicates 

of SF3B1, and SUPV3L1) are already highly saturated, but were considered high quality due to 

presence of signal at a small number of specific RNAs matching previous studies of these RBPs 

(histones, the U2 snRNP, and mitochondrial RNA respectively)63-65. Although the classification 

power of this model is low (AUC = 0.57), datasets not meeting this threshold were more than 7-

fold more likely to fail manual quality assessment (Extended Data Fig. 4c). Conversely, 30 of 222 

manually failed datasets do not meet the criteria (Extended Data Fig. 4d). 

Next, we considered a metric based on whether the dataset contained significant binding 

signal. As described above, we observed that the relative information of a peak better captures 

the binding information of peaks across genes with widely varying expression levels. Thus, to 

validate that a dataset contains significant binding information, we calculated the sum of relative 

information across all peaks in the dataset. We observed that this total information content score 

maximized the f-score of manually annotated high- and low-quality datasets at a total information 

content of 0.042 bits (f-score = 0.81) (Extended Data Fig. 4e). The information content model was 

more accurate (AUC = 0.71) (Extended Data Fig. 4f), accurately classifying 63% of ENCODE 

datasets with 0.36 specificity and 0.93 sensitivity (Extended Data Fig. 4g). 

Next, we developed criteria to assay biological reproducibility, using two metrics based 

upon the Irreproducible Discovery Rate (IDR) approach that has previously been used to assay 

reproducibility of ChIP-seq peaks: reproducibility between real and pseudo-replicates (Rescue 

Ratio) and confirmation that the number of reproducible peaks between both replicates is similar 

(Self-Consistency Ratio)66. We found that cutoffs previously used for ChIP-seq data could be 

similarly applied to eCLIP66, and observed that 81.9% of experiments have a passing rescue ratio 

of <2 (Extended Data Fig. 4h) and 71.1% of experiments have a passing self-constancy ratio of 

<2 (Extended Data Fig. 4i). 223 experiments pass both thresholds, while 88 are borderline 

(passing one of the two thresholds), and 38 fail both thresholds (Extended Data Fig. 4j). Notably, 

these IDR metrics have high specificity, as 151 out of 196 (77%) of experiments that meet unique 

fragment and total information content cutoffs and were manually judged to be high quality passed 

this IDR criteria. In contrast, IDR detects potential false positives by correctly failing 9 out of 56 

(16%) datasets that met read depth and information content metrics, but failed manual inspection 

(Extended Data Fig. 4j). 

Finally, we combined these metrics into one overall automated quality call requiring that 

each experiment passes minimum read and entropy cutoffs as well as either being classified as 
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passing or borderline based on IDR metrics (Extended Data Fig. 4k). Overall our model accurately 

classified 77% of eCLIP datasets with a sensitivity of 0.84 and a specificity of 0.62 (Extended 

Data Fig. 4l), better than any individual classification scheme. 

 

Quantitation of eCLIP signal at region level 
For analyses using binding considered at the level of regions (e.g. 3’UTR, CDS, or proximal 

intronic), read density was counted for the indicated region for both IP and paired input, and 

significance was determined by Fisher Exact test (or Yates’ Chi-Square test if all observed and 

expected values were above 5). Only regions with at least 10 reads in one of IP or input, and 

where at least 10 reads would be expected in the comparison dataset given the total number of 

usable reads, were considered, and significant regions were defined as those with fold-

enrichment ≥ 4 and p-value ≤ 0.00001. 

 

Knockdown followed by RNA-seq (KD/RNAseq)— experimental methods 
Individual RBPs were depleted from HepG2 or K562 cells by either RNA interference (RNAi) or 

CRISPR-mediated gene disruption. RNAi was performed by transducing cells with lentiviruses 

expressing shRNAs (TRC collection) targeting an RBP followed by puromycin selection for 5 

days. CRISPR-mediated gene disruption was performed by transfecting cells with a plasmid 

expressing Cas9 and a gRNA targeting an RBP, followed by puromycin selection for 5 days. In 

each case, knockdowns were performed in biological duplicate along with a pair of control 

knockdowns using a scrambled shRNA or gRNA. Protein was extracted from half of each sample 

and used to confirm knockdown of the target RBP by Western blotting. RNA was extracted from 

half of each sample and used to perform qRT-PCR to confirm knockdown of the targeted RBP 

transcript. We strived to obtain a knockdown efficiency of the target protein and/or RNA of at least 

50% compared to the scrambled control, and for the knockdown efficiency to be within 10% 

between replicates. We used the extracted RNA to prepare RNA-seq libraries with the Illumina 

Tru-seq stranded mRNA library preparation kit. Paired-end 100 bp reads were generated from 

the RNA-seq libraries to an average depth of 63 million reads per replicate, and a minimum of 20 

million reads per replicate, on an Illumina HiSeq 2500.  

 

KD/RNA-seq - data processing 
Primary Data Processing  

Reads were aligned to both GRCh37 using the GENCODE v19 annotations and GRCh38 using 

the GENCODE v24 annotations using both TopHat version 2.0.867 with Bowtie2 version 2.1.068, 
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and STAR version 2.4.059. All analyses described in this manuscript used the 

GRCh37/GENCODE v19 alignments, but the GRCh38/GENCODE v24 alignments are also 

available at the ENCODE portal. In all cases, alignments were performed against the male 

reference genome sequence for HepG2 cells or the female reference genome for K562 cells and 

simultaneously to the ERCC spike-in sequences. The command line parameters for the TopHat 

alignments were: -a 8 -m 0 --min-intron-length 20 --max-intron-length 1000000 --read-edit-dist 4 

--read-mismatches 4 -g 20 --no-novel-juncs --no-discordant --no-mixed. In some rare cases, 

TopHat 2.0.8 misassigned some reads to both strands or did not assign reads to either strand. 

To correct these errors, we used a custom script, tophat_bam_xsA_tag_fix.pl, to properly assign 

the SAM flag values. Gene expression levels were quantitated using RSEM (v1.2.23)69 and 

Cufflinks (v2.0.2)70. Only samples with a Pearson correlation coefficient on FPKM values of 0.9 

or greater between replicates were used for further analysis. Samples with a correlation below 

0.9 were repeated. We used the custom script (makewigglefromBAM-NH.py) to convert the single 

bam alignment files into plus or minus strand and unique and multi-mapped bam files, and then 

convert the intermediate bam files into bigwig files. A single, final bam file was generated per each 

RNA-Seq sample by merging the bam files containing the aligned read with that containing the 

unmapped reads. The merged bam and bigwig files were submitted to the ENCODE Data 

Coordination Center (https://www.encodeproject.org/). In total, 228 HepG2 knockdown 

experiments (221 shRNA and 7 CRISPR) and 224 K562 knockdown experiments (218 shRNA 

and 6 CRISPR) were used for further analysis. 

 

Splicing Quantitation  

Differential alternative splicing (AS) events were analyzed by rMATS (v 3.2.1.beta)71. The 

knockdown replicate bam files and their control replicate bam files with the Gencode v19 

annotation file were analyzed using rMATS, to report five types of the differential AS events: SE 

(Skipped Exon), MXE (Mutually Exclusive Exons), A3SS (Alternative 3' Splice Site), A5SS 

(Alternative 5' Splice Site) and RI (Retained Intron). Events with abs(IncLevelDifference) > 0.05, 

PValue < 0.05 and FDR < 0.05 were identified as significantly differentially expressed AS events. 

MISO (Mixture of Isoforms) (v misopy-0.5.2)72 was used to detect differentially processed 

Tandem 3’ UTR events (alternatively poly(A) site usage). Four pairwise comparisons between the 

two knockdown samples and two controls were run using compare-miso: KD-rep1 versus CN-

rep1, KD-rep1 versus CN-rep2, KD-rep2 versus CN-rep1 and KD-rep2 versus CN-rep2. 

Significant Tandem 3’ UTR events were identified if abs(basin-factor) ³ 5 and p-value < 0.05 on 
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both the more_reads(KD-rep1, KD-rep2) versus fewer_reads(CN-rep1, CN-rep2) comparison and 

the fewer_reads(KD-rep1, KD-rep2) versus more_reads(CN-rep1, CN-rep2) comparison. 

 For the purposes of simplifying the analysis, we considered significant differential 

alternative splicing levels to be strong if |ΔΨ| ³ 30%, moderate when 15% £ |ΔΨ| < 30%, and 

weak if 5% < |ΔΨ| < 15%. 

 

Gene Expression Quantitation  

Both DESeq (v1.28.0)73 and Cuffdiff (v2.2.0)74 were used to perform differentially expressed (DE) 

gene analysis with the KD RNA-Seq data. The expected_count values from the RSEM69 gene 

quantitation results of the STAR alignments were analyzed with DESeq and significant 

differentially expressed genes were identified as those with a p-value < 0.05 and padj < 0.05. In 

parallel, CuffDiff was used to analyze the TopHat aligned files using the default pooled Cross-

replicate dispersion estimation method and the multi-read-correct option. Genes were defined as 

significant if p-value < 0.05 and q-value < 0.1. Finally, a gene was reported as significant only if it 

was defined as a significant DE gene by both DESeq and Cuffdiff. 

 For the purposes of simplifying the analysis, we considered significant differential 

expression to be strong if the |log2(Fold-Change)| ³ 2, moderate when 1< |log2(FoldChange)| < 2, 

and weak when |log2(FoldChange)| £ 1. 

 

Batch Normalization of RBP knockdown RNA-Seq data 

 Batch effects are common in large datasets and must be corrected and accounted for75. 

We therefore designed our knockdown RNA-seq experiments at the onset of the project in way 

that would allow us to correct for batch effects. To do this, for each batch of experiments 

performed on a given day, we utilized the same scrambled shRNA or gRNA as non-specific 

controls alongside a batch of experimental shRNAs or gRNAs targeting a set of RBPs. This 

provided us with consistent non-specific control experiments in every batch that could be used to 

normalize data downstream. In addition to biological controls, if a given batch of biological 

samples was too large to make all the RNA-seq libraries in parallel, we made libraries from the 

non-specific control RNA samples in each sub-set of libraries made from a given biological batch. 

Analyses comparing eCLIP peaks with gene expression or alternative splicing changes in RNA-

seq upon RBP knockdown used changes identified relative to these within-batch paired controls. 

However, to enable further integrated analyses, we performed additional batch correction as 

described below.  
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Batch Correction for Gene Expression Analysis 

Gene expression batch effects were reduced with ComBat75. The HepG2 and K562 samples were 

normalized separately. Genes whose expected counts were 0 on more than 80% samples of the 

set were filtered out prior to normalization. After ComBat normalization and Quantile 

Normalization, the normalized values were rounded to integers and flatted to zeros if the values 

were less than zero. Instead of the original control samples, two “virtual” control replicates were 

created by averaging the normalized expression values of all rep-1 control samples or all rep-2 

control samples for each gene. Then, DESeq was used to quantitate differential expression 

between the normalized knockdown samples and the virtual control samples. The batch 

normalized gene expression results are available at www.encodeproject.org (See Supplementary 

Data 2 for accession identifiers).  

 

Batch Correction for Splicing Analysis 

ComBat75 was also used to reduce batch effects for alternative splicing analysis. The HepG2 and 

K562 samples were normalized separately. The inclusion junction counts and skipping junction 

counts of all samples were collected from rMATS temporary files and used to form a table with 

each sample in columns. “Noise” junction counts were filtered out if their values were 0 on more 

than 80% samples. After ComBat batch normalization and Quantile Normalization on the filtered 

datasets, the normalized values were rounded to integers and flatted to zeros if the values were 

less than zero. Next, normalized rMATS temporary files were formed using the normalized 

junction counts and the “noise” junction counts. Instead of the original control samples, two 

“virtual” control replicates were created by averaging the normalized or “noise” junction counts of 

all rep-1 control samples or all rep-2 control samples for each event. rMATS was then resumed 

on the normalized knockdown samples and the virtual control samples to detect differential 

alternative splicing events. The batch normalized splicing results are available at 

www.encodeproject.org (See Supplementary Data 2 for accession identifiers). 

  

RNA Bind-N-Seq (RBNS) - experimental methods 
RBNS experiments were performed as indicated in the protocol included on each experiment at 

the ENCODE portal. Briefly, randomized RNA oligonucleotides (20 or 40 nt) flanked by constant 

adapter sequences were synthesized and incubated with an SBP-tagged recombinant RBP 

(consisting minimally of all annotated RNA binding domains) at several concentrations (typically 

five, ranging from 5-1300 nM). RNA-protein complexes were isolated with streptavidin-conjugated 

affinity resin and eluted RNA was prepared for deep sequencing, resulting in 10-20 million reads 
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per RBP pulldown concentration with a similar number of input reads sequenced per in vitro 

transcription reaction. 

 

RBNS - data processing 
RBNS kmer enrichments (R values) were calculated as the frequency of each kmer in the 

pulldown library reads divided by its frequency in the input library; enrichments from the pulldown 

library with the highest individual kmer R value were used for each RBP. Mean and SD of R values 

were calculated across all kmers for a given k to calculate the RBNS Z-score for each kmer. 

RBNS pipeline source code is available at: https://bitbucket.org/pfreese/rbnspipeline. 

RBNS motif logos were made using the following iterative procedure for k=5: the most 

enriched 5mer was given a weight equal to its excess enrichment over the input library (=R–1), 

and all occurrences of that 5mer were masked in both the pulldown and input libraries to eliminate 

subsequent counting of lower-affinity ‘shadow’ 5mers (e.g., GGGGA, shifted by 1 from GGGGG). 

All enrichments were then recalculated on the masked read sets to obtain the most enriched 5mer 

and its corresponding weight, with this process continuing until the enrichment Z-score (calculated 

from the original R values) was less than 3. All 5mers determined from this procedure were 

aligned to minimize mismatches to the most enriched 5mer, with a new motif initiated if the number 

of mismatches + offsets exceeded 2. The frequencies of each nucleotide in the position weight 

matrix, as well as the overall percentage of each motif, were determined from the weights of the 

individual aligned 5mers that went into that motif; empty unaligned positions before or after each 

aligned 5mer were assigned pseudocounts of 25% of each nucleotide, and outermost positions 

of the motif logo were trimmed if they had >75% unaligned positions. To improve the robustness 

of the motif logos, the pulldown and input read sets were each divided in half and the above 

procedure was performed independently on each half; only 5mers identified in corresponding 

motif logos from both halves were included in the alignments to make the final motif logo. In Fig. 

3a, only the top RBNS motif logo is shown if there were multiple logos (all motifs displayed on the 

ENCODE portal within the "Documents" box of each experiment). 
  

Immuno-Fluorescence, Microscopy Imaging and Data Processing 
HepG2 cells were seeded in Poly-L-Lysine coated 96-well clear bottom plates (Corning Inc; plate 

number 3882 half-area microplates), at a concentration of 2,000 cells per well in DMEM + 10% 

FBS. After 72h in standard growth conditions (i.e. 37°C and 5% CO2), cells were fixed with 3.7% 

formaldehyde, permeabilized in PBS + 0.5% Triton X-100 and blocked in PBS + 0.2% Tween-20 

+ 2% BSA (PBTB), all conducted for 20 min at room temperature. Primary antibodies directed 
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against specific RBPs (all rabbit antibodies) and marker proteins were subsequently applied to 

the cells at a final concentration of 2 μg/mL in PBTB and incubated overnight at 4°C. The cells 

were next washed 3 times for 10 min each in PBST and incubated with secondary antibodies 

(Alexa647 donkey anti-rabbit and Alexa488 donkey anti-mouse, both diluted 1:500 in PBTB) for 

90 min at room temperature. After 3 PBTB washes, the cells were counter stained with DAPI for 

5 min, washed 3 times in PBS and stored in PBS at 4°C. Subcellular marker antibodies and 

dilutions used are as follows: rat anti-Alpha Tubulin, MCA78G, 1:200 (Serotec, Bio-Rad); mouse 

anti-CD63, ab8219, 1:200 (Abcam); mouse anti-Coilin, GTX11822, 1:100 (GeneTex Inc); mouse 

anti-DCP1a, sc100706, 1:200 (Santa Cruz Biotechnology); mouse anti-Fibrillarin, ab4566, 1:200 

dilution (Abcam); mouse anti-GM130, #610822, 1:200 (Becton Dickinson); mouse anti-KDEL, 

ENZSPA827D, 1:200 (Enzo Life Sciences); mouse anti-Phospho Tyrosine, #9411S, 1:200 (NEB); 

mouse anti-PML, sc-966, 1:50 (Santa Cruz Biotechnology); mouse anti-SC35, GTX11826, 1:200 

(GeneTex Inc). For staining with Mitotracker (Molecular Probes, M22426), cells were incubated 

with 100nM of dye in tissue culture media for 45 min at 37°C prior to fixation. For staining with 

Phalloidin (Sigma, P5282), cells were incubated with 50ug/ml of Phalloidin for 20 min prior DAPI 

staining. 

Imaging was conducted on an ImageXpress Micro high content screening system 

(Molecular Devices Inc). For each RBP/marker combination, 10-20 high resolution images were 

acquired in the DAPI, FITC and Cy5 channels, using a 40x objective. Automated laser based 

auto-focusing and auto-exposure functions were employed for sample imaging, with exposure 

times ranging from 250-3000ms, 100-500ms and 50-100ms, for RBP, Marker and DAPI channels 

respectively. Raw unprocessed grayscale images from individual channels were acquired as high 

resolution TIF files of 726kb each. An in house Matlab script was developed to batch normalize 

image intensity values and add blue, green or red colors to the respective channels, which were 

subsequently merged as colour JPEG files. The final images were uploaded on a server 

accessible through the RBP Image Database website. A MySQL relational database (version 

5.1.73) was implemented, along with a MyISAM storage engine, to store the images, data 

annotations and characteristics. A controlled vocabulary of descriptors was devised to document 

RBP subcellular localization features. 

Image analysis to quantify nuclear/cytoplasmic staining ratios, or to assess the degree of 

RBP targeting to punctate subcellular structures (e.g. Cajal bodies, nuclear speckles, nuceloli, 

Golgi, P-bodies), was conducted using ‘Granularity’, ‘Colocalization’ and ‘Multi Wavelength Cell 

Scoring’ analysis modules from the MetaXpress v3.1 software (Molecular Devices Inc), according 

to manufacturer recommendations. For localization categories including microtubules, actin, cell 
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cortex, ER, focal adhesions, mitochondria and mitotic apparatus, manual localization grading was 

conducted by ranking candidate RBPS as strongly or weakly co-localized with respective protein 

markers. The Circos plot of localization co-occurrance (Fig. 7b) was generated by drawing one 

line between every pair of categories for each RBP that shared both localization annotations. 

Nuclear annotations are indicated in purple, cytoplasmic in red, and lines between nuclear and 

cytoplasmic annotations are indicated in yellow. 

  

ChIP-seq - experimental methods 

Chromatin immunoprecipitation was implemented according to ChIP Protocol optimized 

for RNA-binding proteins (https://www.encodeproject.org/documents/e8a2fef1-580b-45ad-b29c-

fffc3d527202/@@download/attachment/ChIP-seq_Protocol_for_RNA-

Binding_Proteins_ENCODE_Fu_lab_RuiXiao.pdf). In brief, prior to coupling with RBP antibodies, 

magnetic beads were equilibrated by washing with ChIP dilution buffer and blocked with glycogen, 

BSA and tRNA in ChIP dilution buffer. 10-20 million HepG2 and K562 cells were crosslinked in 

1% formaldehyde diluted in 1xPBS for 20 minutes and then quenched by adding glycine. Cell 

nuclei were extracted by resuspending the cell pellet with cell lysis buffer with occasional 

inversion. Nucleus pellets resuspended in nuclear lysis buffer were sonicated with a Branson 

Sonifier cell disruptor. 95% of nuclear lysate was diluted to a final concentration of 1% triton X-

100, 0.1% sodium deoxycholate and 1X proteinase inhibitor cocktail and was subjected to 

immunoprecipitation with antibody coupled beads; the other 5% of nuclear lysate was used as 

input chromatin. Stringent washes were performed before elution. Input and immunoprecipitated 

chromatin DNAs were recovered by decrosslinking, RNase A digestion, proteinase K treatment, 

phenol/chloroform extraction and precipitation with ethanol. Library construction was performed 

using the ChIP-seq Sample Prep Kit (Illumina). DNA Libraries between 200-400 bp were gel 

purified, quantified with Qubit and sequenced on the Illumina HiSeq 2000/2500. All RBP ChIP-

seq experiments were performed in duplicate. Antibodies used in RBP ChIP-seq experiments 

were validated by immunoprecipitation and shRNA/CRISPR knockdown according to ENCODE 

RBP antibody characterization guidelines.  

 
ChIP-seq - data processing 
RBP ChIP-seq datasets used in this study were processed by ENCODE Data Coordinating Center 

with the same uniform processing pipelines previously described for transcription factor ChIP-seq 

(https://www.encodeproject.org/chip-seq/transcription_factor/). After removing low quality and 

PCR duplicate reads, peaks were identified with SPP and reproducible peaks across biological 
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replicates were identified with the IDR pipeline to yield 2 sets (optimal and conservative) of peaks 

at IDR threshold=0.0566. Data reproducibility was assayed using the IDR pipeline, requiring ‘pass’ 

or ‘borderline’ as previously described for ChIP-seq analysis66. Generally, >10 million usable 

reads from each replicate were required; however, a limited set of datasets were exempted if 

manual inspection indicated significant reproducible signal at lower read depths. 5 datasets that 

showed reproducible signal but less than 200 reproducible peaks in the ‘optimal’ set were 

released at the ENCODE DCC but not included in further analysis (Supplementary Data 7). 

 
Integrated Analysis 
Saturation Analysis 
Saturation analysis of eCLIP and KD/RNA-seq data was performed by randomly shuffling the 

order of datasets 100 times, subsampling 1 through all datasets, and calculating the desired 

metrics. Gene level saturation analysis of RBP binding was calculated first by taking all unique 

genes that were bound by an IDR filtered peak in an eCLIP experiment. Then, each eCLIP 

experiment was iteratively added to the previous experiment, counting only unique genes in any 

experiment. Saturation analysis of differentially expression genes from KD/RNA-seq was similarly 

performed, based on differentially expressed genes identified with DESeq2. Genes were identified 

as differentially expressed if they had an adjusted p-value < 0.05 between knockdown and control. 

Alternative versions of this analysis used (Extended Data Fig. 8a) all genes, (Extended Data Fig. 

8b) only genes with TPM > 1 in HepG2 and K562, or (Extended Data Fig. 8c) only genes with 

TPM > 1 in either HepG2 or K562, using average gene-level expression from two rRNA-depleted 

RNA-seq experiments in HepG2 (ENCODE accession ENCFF533XPJ, ENCFF321JIT) and K562 

(ENCFF286GLL, ENCFF986DBN). The set of differentially expressed and bound genes was 

determined by taking all genes differentially expressed upon RBP KD that contained at least one 

IDR-filtered peak in the corresponding eCLIP experiment in the same cell type.  

Differentially spliced events were defined as those meeting p-value < 0.05, FDR < 0.1, 

and change in Percent Spliced In (|ΔΨ|) > 0.05 from rMATS analysis (described above). The 

number of unique events was defined as the number of non-overlapping events upon combining 

all experiments for a given sampling. A differentially spliced event was considered bound if for 

any RBP in which the event was differentially included upon KD, there was an eCLIP peak for the 

same RBP in the same cell type between the start of the upstream flanking exon and the end of 

the downstream flanking exon for cassette exons and mutually exclusive exons, start of the 

upstream flanking exon and end of the common exon region for A3SS, start of the common exon 
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and end of the common exon region for A5SS, and start of the upstream and stop of the 

downstream exons for retained introns). 

To perform saturation of transcript regions, the highest expressed transcript for each gene 

was first identified using transcript-level quantitations from the same rRNA-depleted RNA-seq 

experiments described above. The following regions were then identified: the entire unspliced 

transcript (pre-mRNA), all exons (exon), 5’ untranslated regions (5’ UTR), coding sequence 

(CDS), 3' untranslated regions (3’UTR), all introns (intron), 100nt intronic regions flanking the 5' 

and 3' splice sites (splice site), proximal intronic regions extending from 100nt to 500nt from the 

5' and 3' splice site (prox. intron), and distal intronic regions extending from 500nt and beyond 

from the 5' and 3' splice sites. Saturation calculations were then performed as described above 

for all genes (Extended Data Fig. 8b and Extended Data Fig. 8g-i) or only genes with TPM > 1 in 

both K562 and HepG2 (Fig. 2g and Extended Data Fig. 8f), and plotted as either the total number 

of bases covered (Extended Data Fig. 8e-f), or the fraction of covered bases divided by the total 

number of bases in that annotation across all genes (Fig. 2g). The ratio of bases covered was 

calculated by dividing the number of bases covered in subsampling of N+1 datasets divided by 

the number covered in subsampling N datasets. 

Analysis of the fold-increase between one and two datasets (Extended Data Fig. 8i) was 

determined by first taking all 73 RBPs profiled in both HepG2 and K562, and calculating the fold-

increase in covered bases by considering 146 comparisons including HepG2 followed by K562 

and K562 followed by HepG2. Then, for each of the 146 comparisons, 10 random other datasets 

were chosen from the same cell type, and for each of the 10 the fold-increase in covered bases 

from adding that dataset to the first was calculated. 

To compare the fold-increase between profiling new RBPs in additional cell lines, eCLIP 

datasets profiling RBFOX2, IGF2BP1, IGF2BP2, and IGF2BP3 in H9 human embryonic stem 

cells were obtained from the Gene Expression Omnibus (GSE78509)76, and added as the 224th 

dataset. These were compared against profiling a new RBP in K562 or HepG2 (calculated by 

adding each of the 150 profiled RBPs as the 222nd (if it was profiled in both cell types) or 223rd 

(if it was profiled in only one cell type) datasets for other RBPs), or a profiled RBP done in second 

cell type (calculated by sampling 222 datasets and adding the 223rd). 

 
Preservation of RBP regulation across cell types 
To consider binding across cell types, first the highest expressed transcript for each gene was 

identified using transcript-level quantitations from the same rRNA-depleted RNA-seq experiments 

described above and used as representative for that gene. Next, genes were categorized based 
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on their absolute fold-difference (FD) between K562 and HepG2: unchanged (FD ≤1.2), weakly 

(1.2 < FD ≤ 2), moderately (2 < FD ≤ 5) or strongly (FD > 5) differential (for each, requiring TPM 

≥ 1 in both K562 and HepG2), cell-type specific genes (TPM < 0.1 in one cell type and TPM ≥ 1 

in the other), or Other (all other genes in GENCODE v19). Peaks were then categorized based 

upon the expression change of their associated gene (Extended Data Fig. 8j). 

Analysis of preservation of binding across cell types was considered in three ways. First, 

for each peak identified in one cell type, the fold-enrichment for that region in the other cell type 

was calculated and considered for each gene type (as in Fig. 2h). Two groups of peaks were then 

identified: those that were ≥ 4-fold enriched in the other cell type, and those that were not enriched 

in the other cell type. The fraction of peaks associated with a gene class that were either ≥ 4-fold 

or not enriched were then considered for each gene class separately (Fig. 2i). Second, the set of 

peaks ≥4-fold enriched (and the set not enriched) was compiled across all genes, and the fraction 

associated with each gene class were then reported (Extended Data Fig. 8l). Finally, peak overlap 

between cell types (Extended Data Fig. 8k) was calculated by determining the fraction of IDR 

peaks identified in one cell type that overlap (requiring at least 1nt overlap) IDR peaks identified 

in the second cell type. For all comparisons, significance between groups was determined by 

Kolmogorov-Smirnov test 

 
 
Motif comparisons between RBNS and eCLIP 
eCLIP 6mer Z-scores in Fig. 3b were calculated as previously described77. Briefly, peaks and a 

shuffled background set of peaks that preserves the region of binding (3’UTR, 5’UTR, CDS, exon, 

proximal and distal intron) were generated. EMBOSS compseq 

[http://structure.usc.edu/emboss/compseq.html] was used on these two peak sets and the Z-

scores of the difference between real and background 6mer frequencies was calculated.  

To produce eCLIP logos in a similar manner for comparison with RBNS logos, an 

analogous procedure was carried out on the eCLIP peak sequences (for this analysis, eCLIP 

peaks with at least 2-fold enrichment were used): the two halves of the RBNS pulldown read set 

were replaced with the two eCLIP replicate peak sequence sets (each peak was extended 50 nt 

upstream of its 5’ end as some RBPs have motif enrichments symmetrically around or only 

upstream of the peak starts), and the input RBNS sequences were replaced by random regions 

within the same gene as each peak that preserved peak length and transcript region (5’ and 3’ 

UTR peaks were chosen randomly within that region; intronic and CDS peaks were shuffled to a 

position within the same gene that preserved the peak start’s distance to the closest intron/exon 
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boundary to match sequence biases resulting from CDS and splicing constraints). The enrichment 

Z-score threshold for 5mers included in eCLIP logos was 2.8, as this threshold produced eCLIP 

logos containing the most similar number of 5mers to that of the Z≥3 5mer RBNS logos. Each 

eCLIP motif logo was filtered to include only 5mers that occurred in both of the corresponding 

eCLIP replicate logos. eCLIP motif logos were made separately for all eCLIP peaks, only 3’UTR 

peaks, only CDS peaks, and only intronic peaks, with the eCLIP logo of those 4 (or 8 if CLIP was 

performed in both cell types) with highest similarity score to the RBNS logo shown in Fig. 3a, 

where the similarity score was the same as previously described to cluster RBNS logos (eCLIP 

logos for all transcript regions shown in Extended Data Fig. 3a). To determine significance of 

overlap between RBNS and eCLIP, a hypergeometric test was performed with 5mers in all RBNS 

logos, eCLIP logo 5mers (for peaks in the region with highest similarity score to the RBNS logo), 

and 5mers in their intersection, relative to the background of all 1,024 5mers; overlap was deemed 

significant if P<0.05. The top ‘eCLIP-only’ logo in each region was the highest eCLIP logo, if any, 

comprised of 5mers that had no overlap with any RBNS Z≥3 5mers (always using at least the top 

10 RBNS 5mers if there were fewer than 10 with Z≥3). 

All eCLIP/RBNS comparisons were for the same RBP with the following exceptions in 

which the eCLIP RBP was compared to a closely related RBNS protein: KHDRBS2 eCLIP versus 

KHDRBS1 RBNS; PABPN1 eCLIP versus PABPN1L RBNS; PTBP1 eCLIP versus PTBP3 RBNS; 

PUM2 versus PUM1 RBNS; and RBM15 versus RBM15B RBNS.  

 

Splicing regulatory effects of RBNS+ and RBNS– eCLIP peaks 
To assess the splicing regulatory effects of RBNS+ and RBNS– eCLIP peaks for Fig. 3c, only 

rMATS SEs with a Ψ between 0.05 and 0.95 in at least one of the control or KD were considered 

for each RBP. Each eCLIP peak (extended 50 nt 5’ of the peak start) was first checked if it 

overlapped the SE, and if not then if it overlapped the upstream or downstream flanking 250 nt. 

To compare the magnitude of splicing changes upon KD for eCLIP+ versus eCLIP– SEs while 

minimizing the confounding factors of different wildtype host gene expression level and SE Ψ 

values among these two sets of SEs, a matched set of eCLIP– SEs was created by selecting for 

each eCLIP+ SE an SE in the same decile of wildtype gene expression and wildtype Ψ for each 

corresponding SE with an eCLIP peak. A CDF of the ΔΨ changes upon KD was compared for 

the eCLIP+ versus eCLIP– SEs in each of the 6 SE direction/eCLIP region combinations 

([included, excluded SE] × [peak over SE, upstream intron, downstream intron]), with significance 

P<0.05 for a one-sided Wilcoxon rank-sum test that |ΔΨ|SE, peak > |ΔΨ|SE, no peak. If the eCLIP+ 

versus eCLIP– comparison was significant, the eCLIP peaks were divided into those that did and 
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did not contain the top RBNS 5mer. The ΔΨ values for all RBPs in each of the 6 SE 

direction/eCLIP regions were combined for comparison in Fig. 3c; see Extended Data. Fig. 4a for 

RBPs that were significant in each region (12 included/4 excluded upon KD, upstream intron 

eCLIP peak; 11 included/2 excluded upon KD, SE eCLIP peak; 7 included/7 excluded upon KD, 

downstream intron eCLIP peak). To assess eCLIP peaks with or without the top ‘eCLIP-only’ 

kmer, the top 5mer from the aforementioned ‘eCLIP-only' logo was used from the first region with 

an eCLIP-only logo among: all peaks; CDS peaks; intron peaks; and 3’UTR peaks (the more 

highly enriched 5mer if eCLIP was performed in both cell types). The resulting ‘eCLIP-only’ 5mers 

for Extended Data Fig. 4b were: CELF1 (CUCUC), EIF4G2 (GUGUG), EWSR1 (CGCGG); 

FUBP3 (UUGUU); FUS (GUGUG); HNRNPC (GUCGC); HNRNPK (UCCCC); HNRNPL (none); 

IGF2BP1 (GUGUG); IGF2BP2 (CGCCG); KHDRBS2: (none); KHSRP (none); PABPN1L 

(CGCGG); PCBP2 (CGGCG); PTBP3 (GAAGA); PUM2 (UUUUU); RBFOX2 (GGGGG); RBM22 

(GGUAA); SFPQ (UCCGG); SRSF5 (CGGCG); SRSF9 (CUGGA); TAF15 (AGGGA); TARDBP 

(GAAGA); TIA1 (CGCCG); TRA2A (GAGGG). 

 

Overlaps between RBP binding and gene expression perturbation upon KD/RNA-seq 
To increase sensitivity for gene expression analysis, significant binding was determined at the 

level of transcript regions (including 5’UTR, CDS, 3’UTR, and introns) instead of using peaks. To 

identify significant enrichment between binding and expression changes, genes with significantly 

enriched eCLIP signal at regions (p ≤ 0.00001 and log2(fold-enrichment) ≥ 4, as described above) 

were overlapped with the set of genes with significantly altered expression in KD/RNA-seq 

(adjusted p-value < .05 between knockdown and control from DEseq analysis). Enrichment was 

calculated separately for knockdown-increased and knockdown-decreased genes, with 

significance determined by Fisher Exact test (or Yates’ Chi-Square test if all observed and 

expected values were above 5). Comparisons with either knockdown-increased or knockdown-

decreased genes from knockdown RNA-seq were only performed if more than 10 genes showed 

significant changes. To avoid biases due to RNA abundance, for each comparison of a region 

type with each eCLIP dataset a background set of genes was created by identifying all genes for 

which the region type (5’UTR, CDS, 3’UTR) had at least 10 reads in one of IP or input, at least 10 

reads would be expected in the opposite (IP or input) dataset given the total number of usable 

reads. For cumulative distribution plots, genes were separated based on their eCLIP fold-

enrichment in IP versus input for the indicated transcript region.  

To perform TIA1 motif enrichment analysis, first the fold-enrichment of each 5mer was 

calculated by comparing the frequency in 3’UTRs of genes increased or decreased upon TIA1 
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knockdown in K562 or HepG2 with the frequency in a set of control genes upon knockdown 

(changed genes upon KD: DEseq adjusted P-val < 0.05 and |Fold-Change| > 1.5; control genes: 

DEseq P-val > 0.5 and |Fold-Change| < 1.1, subsetted to match the starting expression of 

changing genes upon KD). The top 15 5mers in TIA1 RBNS were then highlighted among in the 

ranked ordering of all 1,024 5mers. For positional analysis, a meta-3’UTR was created by 

normalizing all 3’UTRs to a 100nt window. For each normalized position, the frequency of the top 

10 TIA1 RBNS 5mers was calculated for each of the up-regulated, down-regulated, and control 

gene sets. Significance at each position was determined by P < 0.05 in a binomial test comparing 

the number of up- or down-regulated genes that have one of the top 10 RBNS 5mers at that 

position under the null frequency that it is equal to the corresponding frequency observed in 

control genes.  

 
RBP binding correlation with knockdown-perturbed splicing (splicing maps) 
RBP binding/splicing maps were generated using eCLIP normalized (reads per million) read 

densities overlapped with alternatively spliced (AS) regions from rMATS JunctionCountsOnly files 

from the same cell type. First, the set of differentially alternatively spliced events of the desired 

type (cassette/skipped exons (SE), alternative 5’ splice site (A5SS), or alternative 3’ splice site 

(A3SS) events were identified (Extended Data Fig. 18a), requiring rMATS p-value < 0.05, FDR < 

0.1, and |ΔΨ| > 0.05 in knockdown versus control RNA-seq. To eliminate potential double 

counting of CLIP densities, overlapping AS events were additionally filtered to choose only the 

events containing the highest average inclusion junction count (IJC) among all replicates (using 

the bedtools v2.26 command merge (-o collapse -c 4) and pybedtools 0.7.9).  

Next, for each splicing event, per-position input probability densities were subtracted from 

IP probability densities to attain position-level enrichment or depletion, for regions extending 50nt 

into each exon and 300nt into each intron composing the event. Subtracted read densities were 

then normalized to sum to 1 across each event in order to equally weigh each event, creating 

tracks referred to as ‘Normalized eCLIP enrichment’ (Extended Data Fig. 18b). For shorter exons 

(<100 nt) and introns (<600nt), densities were only counted until the boundary of the neighboring 

feature. Skipped exon (SE) maps were plotted using eCLIP densities overlapping the following 4 

regions around AS events: 3' end of the upstream exon, 5' end of the cassette, 3' end of the 

cassette, and 5' end of the downstream exon. A lternative 3' splice site (A3SS) maps were defined 

with three regions: 3' end of the upstream exon, 5' end of the longer transcript, and the 5' end of 

the shorter transcript. Alternative 5' splice site (A5SS) maps were defined with three regions: 3' 
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end of the shorter transcript, 3' end of the longer transcript, and the 5' end of the downstream 

exon. 

Plots of eCLIP signal enrichment (referred to as 'splicing maps’) were then created by 

calculating the mean and standard error of the mean over all events after removing the highest 

(2.5%) and lowest (2.5%) outlying signal at each position, referred to as ‘Average eCLIP 

enrichment’ (Extended Data Fig. 18c). Splicing maps were only considered for RBPs with 100 or 

more altered cassette exon events, or 50 or more alternative 5’ or 3’ splice site events, considering 

knockdown-included and knockdown-excluded events separately. Out of a total of 203 pairings 

of eCLIP and knockdown/RNA-seq in the same cell type (covering 139 RBPs), this left 92 pairings 

(72 RBPs) for cassette exons, 27 pairings (22 RBPs) for A3SS, and 20 pairings (18 RBPs) for 

A5SS. As a background reference for cassette exon comparisons, sets of 1,805 (HepG2) and 

2,222 (K562) ’native’ cassette exons were identified which had 0.05 < Ψ < 0.95 in at least half of 

control shRNA RNA-seq datasets for that cell type. Similar sets of 202 (K562) and 159 (HepG2) 

native alternative 5’ splice site and 389 (K562) and 352 (HepG2) native alternative 3’ splice site 

events were identified that had 0.05 < Ψ < 0.95 in at least half of control shRNA RNA-seq datasets 

for that cell type. RBP-responsive event eCLIP enrichment was then calculated as eCLIP signal 

enrichment at RBP-regulated events minus eCLIP signal enrichment at native control events, 

referred to as ‘Enrichment relative to control events’ (Extended Data Fig. 18d). To calculate 

significance, 1000 random samplings were performed from the native cassette exon set using the 

number of events in the knockdown-included (or excluded), and significance was set as being 

either lower than the 0.5th or higher than the 99.5th percentile for each position. 

Correlation between splicing maps was defined as the Pearson correlation (R) between a 

vector containing both included-upon knockdown and excluded-upon knockdown RBP-

responsive event eCLIP enrichment for each RBP. If an RBP had less than the minimum required 

number of events (100 for cassette exons or 50 for alternative 5’ or 3' splice site events) for either 

knockdown-included or knockdown-excluded events, the correlation was only calculated using 

the other event type. 
To generate cross-RBP splicing maps, the above approach was modified by taking the 

set of differentially included (or excluded) cassette exons identified in knockdown of RBP A and 

calculating the eCLIP splicing map separately for every other RBP within the same binding class 

(determined in Fig. 2b) as RBP A, including the normalization against a background of eCLIP 

signal for native SE events (as shown for HNRNPC knockdown-included, RBFOX2 knockdown-

excluded, and TIA1 knockdown-included cassette exons in Extended Data Fig. 20b,c,e 
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respectively). The average across all RBPs was then used to calculate the average cross-RBP 

enrichment (Extended Data Fig. 20a). 

To calculate the number of RBPs bound per exon, the set of spliceosomal RBPs was 

taken from manual annotation of RBP functions (described above and listed in Supplementary 

Data 1). The number of reproducible (IDR) peaks at each position relative to splice sites was 

summed across all RBPs and divided by the total number of cassette or constitutive exons 

respectively. 

 

Comparison of DNA- and RNA-binding properties of RBPs 
For integrative analyses, DNaseI HS data (http://genome.ucsc.edu/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeOpenChromSynth), histone modifications by ChIP-seq from 

ENCODE/Broad Institute (http://genome.ucsc.edu/cgi-

bin/hgFileUi?db=hg19&g=wgEncodeBroadHistone) and eCLIP-seq data from ENCODE 

(https://www.encodeproject.org) were downloaded and compared with RBP ChIP-seq data. 

To explore the possibility that some RBP chromatin association events might be coupled 

with their direct RNA binding activities in cells, RNA binding peaks were compared with DNA 

binding signals as assayed by ChIP-seq to quantify enrichment. Only eCLIP peaks in gene body 

regions (excluding promoter and terminator regions, defined as the 1kb surrounding regions of 

TSS and TTS) were considered. The ChIP-seq signals were calculated for each eCLIP peak, 

together with surrounding regions that are 10 times the length of eCLIP peak on each side. 

Wilcoxon rank-sum tests were then performed to see whether ChIP-seq signal were enriched at 

the middle third regions. 

To see whether those differentially-expressed genes after RBP knockdown were enriched 

in RBP binding at chromatin level, equal numbers of genes with similar expression level either 

with or without binding to the TSS region were randomly sampled, the number of differentially-

expressed genes after knockdown of the RBP were counted (fold change > 1.5 or < 2/3, adjusted 

p-value <0.05 by DESeq2), and one-tailed Fisher’s exact tests were then performed to test the 

dependence of RBP binding and differential expression. Odds ratio was defined as (a/b) / (c/d), 

where a = the number of genes with RBP ChIP-seq peaks and differential expression (or splicing) 

upon RBP knockdown, b = genes with RBP ChIP-seq peaks but no differential expression, c = 

genes without ChIP-seq peaks but with differential expression, and d = genes without ChIP-seq 

peaks or differential expression. The above procedure was performed 100 times to give the 

distribution of the odds ratio. A significant dependence was defined when the null hypothesis was 

rejected at level of 0.05 for at least 95 times. The correlation between RBP association and genes 
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with regulated alternative splicing events (A3SS, A5SS, RI, MXE and SE events) were 

investigated similarly. 

 
Analysis of RBP regulatory features in subcellular space 
Localization annotations and calculation of nuclear versus cytoplasmic ratio were generated from 

immunofluorescence imaging as described above. “Nuclear RBPs” were defined as those with 

nuclear/cytoplasmic ratio ≥ 2, and "Cytoplasmic RBPs" were defined as those with nuclear / 

cytoplasmic ratio ≤ 0.5. Spliced reads were defined as reads mapping across an annotated 

GENCODE v19 splice junction (extending at least 10 bases into each exon) and unspliced reads 

were defined as reads that overlapped an exon-intron junction (extending at least 10 bases into 

both the exon and intron regions). Significance between groups was determined by Wilcoxon rank 

sum test. Prediction of RNA secondary structure was performed using the RNAfold webserver 

(http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi)78 with default parameters. Shown 

is the MFE secondary structure prediction. 

 
RBP expression in tissues 
Tissue specificity was measured as the entropy deviation from a uniform distribution among all 

tissues as in1. For each RBP, the log2(TPM+1) was calculated for each of the 42 samples (HepG2, 

K562, and 40 tissues profiled by the GTEx consortium79), and the tissue specificity was computed 

as the difference between the logarithm of the total number of samples (N=42) and the Shannon 

entropy of the expression values for an RBP: 

S = Hmax - Hobs = log2(N) - Σi=1…N pi x log2(pi), 

Where pi = xi / Σi=1…N xi 

for xi = log2(TPMi + 1) in sample i. 

The data used for the analyses were obtained from dbGaP accession number phs000424.v2.p1 

in Jan. 2015. TPMs were measured using kallisto80 on the following samples: Adipose-

Subcutaneous: SRR1081567; AdrenalGland: SRR1120913; Artery-Tibial: SRR817094; Bladder: 

SRR1086236; Brain-Amygdala: SRR1085015; Brain-AnteriorCingulateCortex: SRR814989; 

Brain-CaudateBasalGanglia: SRR657731; Brain-CerebellarHemisphere: SRR1098519; Brain-

Cerebellum: SRR627299; Brain-Cortex: SRR816770; Brain-FrontalCortex: SRR657777; Brain-

Hippocampus: SRR614814; Brain-Hypothalamus: SRR661179; Brain-NucleusAccumben: 

SRR602808; Brain-SpinalCord: SRR613807; Brain-SubstantiaNigra: SRR662138; Breast-

MammaryTissue: SRR1084674; Cervix: SRR1096057; Colon: SRR1091524; Esophagus: 

SRR1085211; FallopianTube: SRR1082520; Heart-LeftVentricle: SRR815517; Kidney-Cortex: 
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SRR809943; Liver: SRR1090556; Lung: SRR1081283; MinorSalivaryGland: SRR1081589; 

Muscle-Skeletal: SRR820907; Nerve-Tibial: SRR612911; Ovary: SRR1102005; Pancreas: 

SRR1081259; Pituitary: SRR1077968; Prostate: SRR1099402; Skin: SRR807775; 

SmallIntestine: SRR1093314; Spleen: SRR1085087; Stomach: SRR814268; Testis: 

SRR1081449; Thyroid: SRR808886; Uterus: SRR820026; Vagina: SRR1095599. 
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Figures 

 
Figure 1 | Overview of experiments and data types. 
(a) Models of the five assays performed to characterize RNA binding proteins (RBPs): enhanced 

crosslinking and immunoprecipitation (eCLIP) to identify RNA targets in HepG2 and K562 cells, 

RNA Bind-N-Seq (RBNS) to identify in vitro binding affinities, knockdown followed by RNA-seq to 

identify RBP-responsive genes and splicing events, ChIP-seq to identify DNA association (either 
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direct or indirect through DNA binding proteins (DBPs)), and immunofluorescence to identify 

protein sub-cellular localization patterns.  

(b) The 352 RNA binding proteins (RBPs) profiled by at least one ENCODE experiment 

(orange/red) are shown, with localization by immunofluorescence (green), essential genes from 

CRISPR screening (maroon), manually annotated RBP functions (blue/purple), and annotated 

protein domains (pink). Histograms for each category are shown on bottom, and select RBPs 

highlighted in this study are indicated on left. 

(c) Combinatorial expression and splicing regulation of PTBP3. Tracks indicate eCLIP and RNA-

seq read density (as reads per million, RPM). (bottom left) The alternatively spliced exon 1-3 

region is shown with PTBP1 eCLIP and RNA-seq, with lines indicating junction-spanning reads 

and percent spliced in (ψ) is indicated. Boxes above indicate reproducible (by IDR) PTBP1 peaks 

in HepG2, with red boxes indicating RBNS motifs for PTB family member PTBP3 located within 

(or up to 50 bases upstream of) peaks. (bottom right) The 3’UTR is shown with TIA1 eCLIP and 

RNA-seq in K562 cells, with overall gene transcripts per million (TPM) as indicated. Boxes above 

indicate IDR peaks, with red boxes indicating TIA1 RBNS motifs located within (or up to 50 bases 

upstream of) peaks. 
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Figure 2 | Integrated analysis of RBP:target association networks. 
(a) Schematic of ENCODE eCLIP experiments.  

(b) Stacked bars indicate the number of significantly enriched eCLIP peaks (with fold-enrichment 

≥ 8, p-value ≤ 0.001, and meeting biological reproducibility criteria in RBP immunoprecipitation 

versus size-matched input). Number of peaks is shown on a logarithmic scale; bar heights are 

pseudo-colored based on the linear fraction of peaks that overlap the indicated regions of pre-

RNA, mRNA, and non-coding RNAs. Datasets were hierarchically clustered to identify 6 clusters 

based on similar region profiles (Extended Data Figure 7a). 
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(c) Model of eCLIP analysis pipeline for quantitation of eCLIP signal at RNA families with multiple 

transcript or pseudogene copies. 

(d) Stacked bars indicate the number of reads from TROVE2 eCLIP in K562 that map either 

uniquely to one of four primary Y RNA transcripts, map uniquely to Y RNA pseudogenes (identified 

by RepeatMasker), or (for family-aware mapping) map to multiple Y RNA transcripts but not 

uniquely to the genome or to other repetitive element families.  

(e) tSNE plot showing clusters of RBPs based on unique genomic as well as multicopy element 

signal. 16 clusters plus one outlier were identified using the MATLAB DBSCAN package.  

(f) For each cluster identified in (e), heatmap indicates the average relative information for RBPs 

in that cluster for each of the listed RNA regions or elements. 

(g) Lines indicate the cumulative fraction of bases covered by peaks for 100 random orderings of 

the 223 eCLIP datasets, separated by transcript regions as indicated. Shaded region indicates 

tenth through ninetieth percentiles. 

(h) Each point indicates the fold-enrichment in K562 eCLIP of RBFOX2 for a reproducible 

RBFOX2 eCLIP peak in HepG2, with underlaid black histogram. Peaks are separated based on 

the relative expression difference of the bound gene between K562 and HepG2: unchanged (fold-

difference ≤ 1.2), weakly (1.2 < fold-difference ≤ 2), moderately (2 < fold-difference ≤ 5) or strongly 

(fold-difference > 5) differential (each of which required expression TPM ≥ 1 in both K562 and 

HepG2), or cell-type specific genes (TPM < 0.1 in one cell type and TPM ≥ 1 in the other). Mean 

is indicated by red lines, with significance determined by Kolmogorov-Smirnov test. 

(i) For each RBP profiled in both K562 and HepG2, points indicate the fraction of peaks in the first 

cell type associated with a given gene class that are (blue) at least four-fold enriched, or (red) not 

enriched (fold-enrichment ≤ 1) in the second cell type. Boxes indicate quartiles, with mean 

indicated by green lines. 
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Figure 3 | Sequence-specific binding in vivo is determined predominantly by intrinsic RNA 
affinity of RBPs. 
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(a) Left: Top sequence motif of RBNS versus eCLIP-derived enriched 5mers clustered by 

similarity of RBNS motifs. Filled circles to the right of the eCLIP logo indicate if the groups of 

5mers comprising the RBNS and eCLIP motifs overlap significantly (hypergeometric P<0.05). 

Center-left: Heatmap indicates correlation between RBNS and eCLIP enrichments for all 5-mers. 

Center: Enrichment of the top RBNS 5mer in eCLIP peaks (ReCLIP) within different genomic 

regions. Right: The proportion of eCLIP peaks attributed to each of the 10 highest affinity RBNS 

5mers, as well as the #11-24 RBNS 5mers combined. The black line indicates the number of top 

RBNS 5mers required to explain >50% of eCLIP peaks for each RBP (maximum, 24 5mers). 

(b) Comparison of PCBP2 in vivo versus in vitro 6mer enrichments, with 5mers containing CCCC 

and GGGG highlighted. Significance was determined by Wilcoxon rank-sum test and indicated if 

P < 0.05. x- and y-axes are plotted on an arcsinh scale. Similar results were obtained when 

analyzing 6mers rather than 5mers. 

(c) Comparison of the magnitude of splicing change upon RBP knockdown for SEs containing 

eCLIP peaks with versus without the top RBNS 5mer, for RBP-repressed SEs grouped by the 

location of the eCLIP peak relative to the SE. The numbers of peaks for each region were as 

follows: exon peaks with RBNS motif: 368, without RBNS: 1758; upstream intron peaks with 

RBNS: 223, without RBNS: 2195; downstream intron peaks with RBNS 250, without RBNS 953. 

Significance was determined by Wilcoxon rank-sum test and indicated if P < 0.05.  
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Figure 4 | Association between RBP binding and RNA expression upon knockdown. 
(a) Heatmap indicates significance of overlap between genes with regions significantly enriched 

(p ≤ 10-5 and ≥4-fold enriched in eCLIP versus input) and genes significantly (top) increased or 

(bottom) decreased (p < 0.05 and FDR < 0.05) in RBP knockdown RNA-seq experiments. 

Significance was determined by Fisher’s Exact test or Yates’ Chi-Square approximation where 

appropriate; * indicates p < 0.05 and ** indicates p < 10-5 after Bonferroni correction. Shown are 

all overlaps meeting a p < 0.05 threshold; see Extended Data Fig. 14 for all comparisons. 

(b-c) Lines indicate cumulative distribution plots of gene expression fold-change (knockdown 

versus control) for indicated categories of eCLIP enrichment of (b) METAP2 in K562 and (c) TIA1 

in K562. ** indicates p < 10-5 by Kolmogorov-Smirnov test. 

(d) Enrichment or depletion of the top 15 TIA1 RBNS 5mers in 3’UTRs of genes that are up- and 

down-regulated upon TIA1 knockdown in K562 and HepG2, relative to their frequency in control 

gene 3’UTRs (green lines indicate an enrichment of 1 (equal frequency in regulated gene 3’UTRs 
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and control gene 3’UTRs)). All 1,024 5mers are ordered from lowest to highest enrichment from 

left to right in each row. 

 
Figure 5 | Integration of eCLIP and RNAseq identifies splicing regulatory patterns. 
(a) Normalized splicing maps of RBFOX2, PTBP1, SRSF1, HNRNPL for cassette/skipped exons 

(blue) excluded and (red) included upon knockdown, relative to a set of 'native' cassette exons 

(nSE) with 0.05 < inclusion rate < 0.95 in controls. Lines indicate average eCLIP read density in 

IP versus input for indicated exon categories. Shaded area indicates 0.5th and 99.5th percentiles 

observed from 1000 random samplings of native events. The displayed region shown extends 50 

nt into exons and 300 nt into introns. 



Van Nostrand et al. 

 59 

(b) Heatmap indicates the difference between normalized eCLIP read density at cassette exons 

(top) included or (bottom) excluded upon RBP knockdown, versus native cassette exons. Shown 

are all RBPs with any position meeting p < 0.005 significance and 0.0002 normalized enrichment 

cutoffs (see Extended Data Fig. 19a for all RBPs). 

(c) As in (b), shown for RBP-responsive alternative 3’ splice site events relative to 'native' A3SS 

events with 0.05 < proximal 3’ splice site usage < 0.95 in controls. Dashed lines indicate datasets 

with less than 50 significantly altered events. The displayed regions include the upstream 

common 5′ splice site (grey box), the extended alternative 3′ splice site (orange box) and the distal 

alternative 3′ splice site (purple box). 

 
Figure 6 | Chromatin-association of RBPs and overlap with RNA binding. 
(a) Overlap between RBP ChIP-seq and DNase I hypersensitive sites and various histone marks 

in HepG2 and K562 cells. Labels indicate marks associated with regulatory regions (RE), 

promoters (TSS), enhancers (E), transcribed regions (T) and repressive regions (R). 

(b) Heatmap indicates the Jaccard indexes between ChIP-seq peaks of different RBPs at 

promoter regions (bottom left) or non-promoter regions (top right) for all HepG2 ChIP-seq 

datasets. See Extended Data Fig. 22b for K562 datasets. 

(c) Percentage of RBP eCLIP peaks overlapped by ChIP-seq peaks (red) or percentage of RBP 

ChIP-seq peaks overlapped by eCLIP peaks (green) for the same RBP. RBPs are sorted by 

decreasing level of overlapped ChIP-seq peaks. 
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(d) Clustering of overlapped chromatin and RNA binding activities of different RBPs at non-

promoter regions in HepG2. Color indicates the degree of ChIP enrichment at eCLIP peaks 

relative to surrounding regions. Significant enrichments (p ≤ 0.001) are indicated by filled circles.  

(e) A representative genomic region showing eCLIP and ChIP-seq signal for HNRNPK, PCBP2 

and PCBP1 proteins in HepG2. 

(f) Cross-RBP comparison of chromatin and RNA binding activities in HepG2. Left: ChIP-seq 

density of indicated RBPs around HNRNPK, PCBP2 or PCBP1 eCLIP peaks. Right: eCLIP 

average read density of indicated RBPs around HNRNPK, PCBP2 or PCBP1 eCLIP peaks. 

 
Figure 7 | RBP sub-cellular localization features and their links to transcriptome binding 
and regulation. 
(a) Example RBPs (green) co-localized with nine interrogated markers (red). 



Van Nostrand et al. 

 61 

(b) Circos plot with lines indicating co-observed localization patterns (red: within cytoplasm; 

purple: within nucleus; orange: between cytoplasm/nucleus). 

(c) For localization patterns with known localized RNA classes, heatmap indicates significance 

(from Wilcoxon rank-sum test) comparing eCLIP relative information for the indicated RNA class 

(y-axis) for RBPs with versus without the indicated localization (x-axis).  

(d) Bars indicate eCLIP relative information content (IP versus input) for mitochondria H-strand 

(grey) or L-strand (red). (left) RBPs with mitochondrial localization in HepG2 are indicated in red. 

(e) Immunoflourescence images of mitochondrial localization of GRSF and DHX30. 

(f) Genome browser tracks indicate eCLIP relative information content along (top) the 

mitochondrial genome or (bottom) a ~300nt region for indicated RBPs. (right) Inset shows RNA 

secondary structure prediction (RNAfold) for the indicated region in blue. 

(g) Heatmap indicates gene expression change upon DHX30 knockdown for all mitochondrial 

protein-coding and rRNA transcripts. * indicates significant expression changes (p < 0.05 and 

FDR < 0.05 from DEseq analysis). 
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Extended Data Figure 1 | Expression of RBPs across tissues and cell types.  
(a) Expression of the 356 RBPs (in Transcripts Per Million) investigated in this study in ENCODE 

cell lines HepG2 and K562 as well as 40 human tissues measured by the GTEx project. RBPs 

sorted by decreasing expression in HepG2. 

(b) Expression of the 10 RBPs with the highest and lowest tissue-specificity across the two 

ENCODE cell lines and 40 human tissues. 
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(c) Shown is RNA-seq read density (reads per million), eCLIP read density (reads per million), 

and RBNS motif presence proximal to a 73-nt cryptic exon expected to induce nonsense-

mediated decay (NMD) of GTP Binding Protein 2 (a ribosome rescue factor whose loss induces 

neurodegeneration in certain genetic backgrounds81). eCLIP indicates that HNRNPL binds over 

the cryptic exon 5’ splice site in a sequence-specific manner to a region rich in the top RBNS 

5mer, ACACA. 

 
Extended Data Figure 2 | Batch correction of RBP knockdown RNA-seq datasets 
(a-d) Heatmaps show Pearson correlation between all RNA-seq datasets before and after 

normalization to remove batch effects, followed by hierarchical clustering. Analysis was performed 

separately for (a-b) HepG2 and (c-d) K562 cell lines. (a,c) For gene expression, correlation was 

determined between gene expression fold-change values (log2) from comparison of (left) RBP 

knockdown versus paired control or (right) performing batch correction on all datasets (as 

described in Methods) followed by comparing RBP knockdown replicates versus a ‘virtual control’ 

defined as the average of all replicate 1 or replicate 2 control experiments respectively. (b,d) For 

splicing, correlation was calculated between change in exon inclusion values between (left) RBP 

knockdown and within-batch control experiments, and (right) RBP knockdown versus a ‘virtual 

control’ defined as the average of all replicate 1 or replicate 2 control samples respectively 
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following batch correction of junction read counts as described in Methods. For all, colors below 

indicate experimental batches.  

 
Extended Data Figure 3 | Experimental quality assessment of eCLIP assays 
(a) Model of ENCODE eCLIP experiments. Inputs were taken by sampling 2% of one of the two 

biosamples prior to immunoprecipitation (IP). 
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(b) Example IP-western image for DCP1B (left) during initial IP tests performed without enzymatic 

steps and (right) during eCLIP experiments. 

(c) Pie charts indicate the number of eCLIP experiments that fell into the following categories: 

failure to successfully immunoprecipitated during eCLIP (IP failure), failure to yield amplifiable 

library in less than 20 PCR cycles (Experiment abandoned), experiments which yielded 

immunoprecipitated library and were sequenced but failed quality assessment (QC failed), 

successful experiments which did not meet ENCODE standards but contained reproducible signal 

and have been released on the Gene Expression Omnibus (GEO), and successful experiments 

which met ENCODE standards and are available at the ENCODE Data Coordination Center 

(Released). 

(d) Plot indicates sum of squared error for varying PCR efficiency when comparing true observed 

number of unique molecules to estimated number of unique molecules for six highly saturated 

(>90% PCR duplicated) experiments. 

(e) Scatter plot of estimated unique molecules at two estimates of PCR efficiency, (red) 2 and 

(blue) 1.84 versus unique fragments obtained after sequencing for six highly saturated (>90% 

PCR duplicated) experiments.  

(f) Scatter plot indicates accurate-eCT (a-eCT) (see Methods) versus unique fragments observed 

(including non-PCR duplicate reads mapped either to unique genomic loci or repetitive elements, 

in millions of reads mapped) for all ENCODE eCLIP experiments. Non-saturated (<60% PCR 

duplicates) datasets are indicated in blue, and saturated (>60% PCR duplicates) datasets are 

indicated in red. Dashed line indicates the number of unique molecules expected based on a-

eCT. 

(g) Scatter plot of estimated unique molecules at two estimates of PCR efficiency, (red) 2 and 

(blue) 1.84 versus unique fragments obtained after sequencing. Shown are 276 moderately 

saturated experiments (>60% PCR duplicated). 

(h) Representative RBPs are listed along with their a-eCT and corresponding estimate of the 

number of unique RNA molecules isolated in eCLIP. UTP3 (in red) did not pass quality control 

metrics. 

(i) Points indicate the a-eCT value of all ENCODE eCLIP experiments, separated into (blue) IgG 

controls, (red) datasets that failed manual quality assessment, and (green) datasets passing 

manual assessment. Dotted line indicates average a-eCT of IgG control experiments (19.6). 

(j) Bars indicate the distribution of eCLIP datasets (separated into classes as described in (c)) 

with respect to required amplification (a-eCT) relative to IgG controls. 
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Extended Data Figure 4 | Quality metrics to assay eCLIP data quality and reproducibility 
(a) Schematic of eCLIP data quality standards.  

(b) Plot indicates f-score for classification of datasets relative to manual quality assessment based 

on unique fragments present. Maximal classification of datasets was obtained at a cutoff of 1.5 

million unique fragments.  

(c) ROC curve for classifying datasets based upon varying minimum unique fragment thresholds. 
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(d) Swarm plot indicates number of unique fragments observed in each eCLIP dataset separated 

by (red) failing or (green) passing manual quality inspection. Dashed line indicates 1.5 million 

read quality threshold that maximizes predictive power on manual classification (as shown in (b)) 

and inset indicates confusion matrix for this threshold versus manual inspection. Three datasets 

judged to be high quality despite low unique fragment number are indicated. 

(e) Plot indicates f-score for classification of datasets based on the total information content in all 

significantly enriched peaks. Only datasets passing the unique fragment cutoff in (a-d) were 

considered.  

(f) ROC curve for classifying datasets based upon varying total information in peak cutoff. 

(g) Swarm plot indicates the total information content across all peaks in each eCLIP dataset that 

passes the unique fragment threshold in (d), separated by (red) failing or (green) passing manual 

quality inspection. Dashed line indicates the information content threshold that maximizes 

predictive power on manual classification (as shown in (e)) and inset indicates confusion matrix 

for this threshold versus manual inspection. 

(h) Bar plot indicates IDR rescue ratio for all ENCODE eCLIP experiments.  

(i) Bar plot indicates IDR self-consistency ratio for all ENCODE eCLIP experiments. Dashed line 

indicates a cutoff of 2 previously used for ChIP-seq analysis.  

(j) Bars indicate the number of ENCODE eCLIP experiments that either (pass, in blue) pass both 

rescue ratio and self-consistency ratio, (borderline, in green) passed just one of the two tests, or 

(fail, in red) failed both tests. 

(k) Bar chart indicates the count of all ENCODE experiments that pass or fail manual or automated 

QC approaches, broken into three groups based on their IDR thresholding metric status: (blue) 

passed, (green) borderline, and (red) failed.  

(l) Schematic detailing final recommended quality assessment decision flowchart.  

(m) Confusion matrix of final classification scheme versus manual quality assessment. 
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Extended Data Figure 5 | Identification of reproducible eCLIP peaks 
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(a) Schematic of eCLIP processing for both unique genomic mapping and repetitive element 

mapping. 

(b) Points indicate (x-axis) the number of CLIPper-identified clusters versus (y-axis) the number 

of significantly enriched peaks (fold-enrichment ³ 8 and p ≤ 0.001) identified for each eCLIP 

experimental replicate. 

(c) Points indicate the number of significantly enriched peaks (fold-enrichment ³ 8 and p ≤ 0.001) 

identified in replicate 1 versus replicate 2 for each of 223 high-quality eCLIP experiments. 

(d) Schematic of adaption of Irreproducible Discovery Rate (IDR) analysis to identification of 

reproducible eCLIP peaks. First, input-normalized clusters are identified separately for two 

biological replicates. Next, these peaks are ranked by relative information content, defined as 

𝐼" = 𝑝" × 𝑙𝑜𝑔'	(
*+
,+
), for proportion of IP reads within peak i represented by pi and fraction of input 

reads within the peak as qi. Next, standard IDR analysis is performed on the ranked peak lists to 

identify reproducible regions at IDR cutoff of 0.01. Next, we considered all CLIPper-identified 

subregions within these IDR regions, and calculated the fold-enrichment in IP versus input for 

each subregion in each replicate. Subregions were ranked by the geometric mean of fold-

enrichment between the two replicates, and the set of non-overlapping subregions that were 

significantly enriched (p ≤ 0.001 in both replicates) with geometric mean of fold-enrichment ³ 8 in 

both replicates were obtained as the set of reproducible peaks 

(e) Plot indicates each peak ranked by IDR score, when IDR score is calculated by ranking peaks 

based on (blue) fold-enrichment above input or (green) information content. 

(f) Points indicate the number of significantly enriched peaks (fold-enrichment ³ 8 and p ≤ 0.001) 

identified in each of replicate 1 and replicate 2 versus the number of reproducible peaks identified 

from IDR analysis (as shown in (b)). 

(g) Points indicate the number of significant and reproducible peaks identified in (x-axis) K562 

versus (y-axis) HepG2, for all RBPs with eCLIP in both cell types. 
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Extended Data Figure 6 | Analysis of eCLIP signal detection based on sequencing depth 
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(a) Points indicate the fraction of significant peaks that contain a GCAUG motif. Shown are (blue) 

all RBPs except RBFOX2, (green) peaks newly identified when comparing the 90% subsampled 

to full RBFOX2 dataset, and (red) the full RBFOX2 dataset. 

(b) Plot indicates the fraction of peaks containing a GCAUG motif for peaks identified in a series 

of subsamples of eCLIP unique genomic fragments for RBFOX2 in HepG2 and K562. Shown are 

RBFOX2 HepG2 (red) replicate 1 and (green) replicate 2, and RBFOX2 K562 (orange) replicate 

1 and (blue) replicate 2. The dashed grey line indicates the mean fraction of GCAUG-containing 

peaks observed across all released eCLIP datasets. 

(c) Plot indicates mean mammalian phastons conservation for all peaks newly discovered in each 

downsampled subsample for RBFOX2 eCLIP in HepG2 (red) replicate 1 and (green) replicate 2 

and K562 (orange) replicate 1 and (blue) replicate 2. 

(d-e) Downsampling analysis for PRPF8 eCLIP in HepG2 (blue) replicate 1 and (green) replicate 

2, and K562 (red) replicate 1 and (purple) replicate 2. (d) Plot indicates the fraction of peaks newly 

discovered in each downsampled subsample that overlap the 5’ splice site. The dashed grey line 

indicates mean fraction overlap with 5’ splice sites for all 512 non-PRPF8 released ENCODE 

datasets. (e) Lines indicate the average conservation for newly discovered peaks at the indicated 

downsampling fraction. 

(f) One point for each gene indicates the TPM (Transcripts Per Million reads) of the gene (x-axis) 

and the number of reads (normalized by peak size) in the peak with the highest number of reads 

for RBFOX2 in HepG2. Dashed line indicates simple linear regression. 

(g) Points indicate the Pearson correlation coefficient (R2) (blue) and slope (green) for the linear 

regression between gene TPM and maximum peak read density for all released ENCODE eCLIP 

experiments. Each point represents an individual dataset as shown in (f). 

(h) Joy plot indicates (top) the distribution of unique genomic fragment values for released 

ENCODE eCLIP experiments, versus (bottom) the distribution of total eCLIP unique genomic 

fragments in the downsampled subsample where the first peak was identified in each gene, 

separated into bins by gene TPM. 

(i) Cumulative distribution function plot indicates the number of reads needed to first detect peaks 

for the set of genes in indicated bins separated by gene TPM: (blue) TPM < .01, (green) .01 ≤ 

TPM < 1.0, (red) 1.0 ≤ TPM < 10.0, (purple) 10.0 ≤ TPM < 100.0, and (gold) 100.0 ≤ TPM.  

(j) Plots indicate the cumulative fraction of genes with peaks discovered at given experimental 

sequencing depth, for the indicated cutoffs for peak enrichment in IP versus input (p-value ≤ .001 

and fold-enrichment ≥ 8 (blue), p-value ≤ .01 and fold-enrichment ≥ 4 (green), p-value ≤ .05 and 

fold-enrichment ≥ 0 (red). 
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(k) Points indicate saturation rate for peak or total information content between the 90% 

subsampled fraction retained and 100% (full dataset) for all 223 high quality ENCODE eCLIP 

experiments. Grey dashed line is 5% saturation cutoff.  

(l) (right) Lines show percent of additional information recovered when adding 10% additional 

reads for (red) HNRNPC, (blue) RBFOX2, and (green) QKI in HepG2, with number of unique 

(non-PCR duplicate) fragments indicated by the x-axis. Dotted line indicates the ‘saturation’ point 

at which less that 5% additional information is gained. (left) Cumulative fraction plot indicates the 

distribution of unique fragments when each eCLIP dataset reaches saturation. Colored points 

indicate depth of sequencing when HNRNPC, RBFOX2 and QKI saturate.  

(m) As in (l), but points are now plotted relative to unique genomic-mapped non-PCR duplicate 

fragments only. 

 
Extended Data Figure 7 | Integrated analysis of 223 eCLIP datasets identifies RBP clusters 
based on binding patterns  
(a) Plot shows the effect of cluster number on hierarchical clustering on the Euclidean distance 

between RBPs for the fraction of peaks overlapping each of the RNA region types as shown in 

Figure 2b. For each number of clusters k between 2 to 35, the sum of squared error was calculated 
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between the number of peaks annotated for each region versus the mean of all RBPs in that 

RBP’s cluster and summed across all RBPs. An inflection point was identified at k=6 (indicated). 

(b) Stacked bars indicate the number of reads from replicate 1 of all 223 eCLIP experiments, 

separated by whether they map (red) uniquely to the genome, (purple) uniquely to the genome 

but within a repetitive element identified by RepeatMasker, or (grey) to repetitive element families. 

Datasets are sorted by the fraction of unique genomic reads. 

(c-e) Each eCLIP dataset is displayed as a point based on tSNE clustering shown in Figure 2e, 

with color indicating (c) whether the dataset passed peak-based or family-mapping based quality 

assessment, (d) the relative information at coding sequence (CDS), or (e) relative information at 

the 45S ribosomal RNA precursor. 
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Extended Data Figure 8 | Saturation of RBP binding and regulation in the transcriptome 
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(a-c) Lines indicate the mean of 100 random orderings of each data type for the number of genes 

that are (green) differentially expressed upon RBP knockdown and RNA-seq (requiring FDR < 

0.05 and p-value < 0.05,), (blue) bound in eCLIP (overlapped by a IDR-reproducible peak with p 

≤ 10-3 and fold-enrichment ≥ 8 in IP versus input), or (orange) both bound and differentially 

expressed in the same cell type. The set of genes considered was (a) all genes (in GENCODE 

v19), (b) genes with TPM > 1 in both HepG2 and K562, or (c) TPM > 1 in either K562 or HepG2. 

Grey dotted line indicates the total number of expressed genes, defined as (a,c) TPM > 1 in either 

K562 or HepG2 or (b) TPM > 1 in both HepG2 and K562. Shaded regions indicate tenth to 

ninetieth percentile. 

(d) Lines indicate the mean of 100 random orderings of datasets for the number of (red) differential 

splicing events upon RBP knockdown (including cassette exons, alternative 5′ and 3′ splice sites, 

retained introns, and mutually exclusive exons; requiring FDR < 0.05, p-value < 0.05, and 

absolute value of change in percent spliced in (|ΔΨ|) > 0.05), and (blue) exons both bound by an 

RBP and differentially spliced upon RBP knockdown in the same cell type (with binding defined 

as a peak located anywhere between the upstream intron 5′ splice site and downstream intron 3′ 

splice site). Shaded regions indicate tenth to ninetieth percentile. 

(e-f) Lines indicate the mean cumulative fraction of bases covered by peaks for 100 random 

orderings of the 223 eCLIP datasets, separated by transcript regions as indicated, with shaded 

region indicating tenth and ninetieth percentiles. The set of genes considered was (e) all genes, 

or (f) only genes with TPM > 1 in both K562 and HepG2.  

(g) Data and colors as in (e), represented as fold-increase in mean bases covered by peaks from 

n to n+1 eCLIP datasets.  

(h) Points indicate the fold-increase in bases covered by peaks between sampling one or two 

datasets, separated by whether the second is the same RBP in a new cell type (KA -> HA or HA -

> KA for RBP A profiled in K562 and then HepG2 or HepG2 and then K562 respectively) or a 

different RBP in the same cell type (KA -> KB or HA -> HB for RBP A followed by RBP B in either 

K562 or HepG2 respectively), with kernel smoothed density indicated by the shaded area. Red 

line indicates median. 

(i) Points indicate the fold-increase in bases covered by peaks between sampling all versus 

leaving one dataset out, separated by whether the RBP is (left) a newly profiled RBP or (center) 

a previously profiled RBP profiled in a second cell type (of either K562 or HepG2). (right) The fold-

increase observed if an independent eCLIP experiment performed in H1 or H9 human embryonic 

stem cells is added (including RBFOX2, IGF2BP3, and two replicates each for IGF2BP1 and 

IGF2BP2). Red line indicates median. 
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(j) Bars indicate the fraction of peaks observed for each RBP within sets of genes separated by 

their relative expression change between K562 and HepG2: unchanged (fold-difference ≤ 1.2), 

weakly (1.2 < fold-difference ≤ 2), moderately (2 < fold-difference ≤ 5) or strongly (fold-difference 

> 5) differential, or cell-type specific genes (TPM < 0.1 in one cell type and TPM ≥ 1 in the other). 

n indicates the number of genes meeting each criteria. For each RBP, the results shown are for 

the cell type with fewer total peaks. 

(k) Points indicate the fraction of overlapping peaks identified from our standard eCLIP processing 

pipeline between K562 and HepG2 for RBPs profiled (blue or red) in both cell types, or (black) 

between one RBP in K562 and a second in HepG2, for sets of genes separated by their relative 

expression change between K562 and HepG2 as in (j). Red line indicates mean. 

(l) Each point represents one eCLIP dataset compared with the same RBP profiled in the second 

cell type. For the set of peaks from the first cell type that are not enriched (fold-enrichment < 1) in 

the second cell type, red points indicate the fraction occurring in genes with the indicated 

expression difference between HepG2 and K562. Blue points similarly indicate the gene 

distribution of peaks four-fold enriched in the opposite cell type. Boxes indicate quartiles, with 

median indicated by the central green line. 
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Extended Data Figure 9 | Enrichment of in vitro motifs in eCLIP peaks for different RNA 
types  
(a) Comparison of RBNS density (proportion of 5mers that are 10 RBNS 5mers, in the SE and 

flanking intronic up/downstream 100 nt), for changed SEs with (x-axis) vs. without (y-axis) an 

eCLIP peak. All experiments with RBNS, eCLIP, and KD/RNA-seq are shown, with 28/35 

experiments having greater RBNS density in SEs with an eCLIP peak. 

(b-c) The average enrichment (geometric mean) of the top 10 RBNS 5mers for a given RBP in 

the peaks of an eCLIP experiment compared to shuffled eCLIP peaks, among all RBPs 

predominantly bound to (b) introns or (c) 3’ UTR + CDS by eCLIP. RBPs arranged by RBNS motif 

similarity along the y-axis, with corresponding RBPs between RBNS and eCLIP boxed along the 

diagonals. 

(d) RBP order and RBNS and eCLIP motifs are as in Figure 3a. At right is shown the ratio of the 

% eCLIP peaks attributable to the top ten RBNS 5mers for each RBP compared to the % of eCLIP 

peaks attributable to the same ten 5mers, averaged over all other eCLIP experiments in the same 

RNA type class (from panels b and c above). For 18 out of 21 RBPs the RBNS motifs explain 

more (R > 1) of the corresponding eCLIP peaks than eCLIP peaks of proteins binding similar 

transcript regions (SRSF9 and RBM22, shown in gray, were excluded because of insufficient 

numbers of RBPs in their type class to perform this analysis). 

(e) The proportion of the top 10 RBNS 5mers that fall within an eCLIP peak, separated by 

transcript region. RBPs arranged from top to bottom according to the proportion falling within an 

eCLIP peak over all transcript regions (all motif occurrences in expressed transcripts). 
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Extended Data Figure 10 | Comparison of in vitro RBNS-derived motifs with in vivo eCLIP-
derived motifs.  
(a) Top motif derived from all eCLIP peaks as well as eCLIP peaks within intronic, CDS, and 

3′UTR regions. Motifs were only derived if there were at least 5,000 peaks or 5% of total peaks in 

that region, averaged over the two eCLIP replicates. Dashed lines indicate eCLIP was not 

performed in that cell line. Filled circles indicate significant overlap (P < 0.05 by hypergeometric 

test) between RBNS and eCLIP motifs.  

(b) The top eCLIP motif that does not match RBNS for the corresponding RBP (if any). The eCLIP 

motif was considered as matching RBNS if any of its constituent 5mers were among the RBNS 

Z≥3 5mers (always using at least 10 RBNS 5mers if there were fewer with Z≥3). Dashed lines 

indicate eCLIP was not performed in that cell line. (right) The percentage of eCLIP experiments 

aggregated over all RBP/cell types in each category of agreement with RBNS. Horizontal line 

indicates a significant difference in the proportion of a particular eCLIP/RBNS agreement category 

between eCLIP analysis of all peaks versus eCLIP analysis of intron, CDS, or 3′UTR peaks (P < 

0.05 by Fisher’s Exact Test). 
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Extended Data Figure 11 | Splicing regulatory activity of RBNS+ and RBNS- eCLIP peaks. 
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(a) Density of 5mers in cassette / skipped exons (SEs) and their flanking intronic up/downstream 

100 nt in changed versus control SEs upon PCBP2 KD in HepG2 cells. The ratio of changed and 

control frequency was computed for each 5mer with the ratio plotted as density on the y-axis, and 

5mers were separated by C-rich (contain 4-5 C’s), G-rich (contain 4-5 G’s), or “Other”. 

Significance determined by Kolmogorov-Smirnov test. 

(b) Percentage of eCLIP peaks that contain a C- or G-rich motif (5mer with 4+ of the respective 

base) among all eCLIP experiments that have corresponding RBNS data. PCBP2 eCLIP in 

HepG2 cells demarcated (eCLIP with 3rd highest proportion of peaks with C-rich motifs; median 

for peaks containing G-rich motifs). 

(c) Left: The distribution of ΔΨ changes upon KD in each of the 6 eCLIP+ peak region/SE splicing 

change types compared to that of eCLIP- SEs for KHSRP in HepG2 cells (significant if P<0.05 by 

Wilcoxon rank-sum test). Center: Regions of significance for eCLIP+ vs. eCLIP- SEs for each 

eCLIP experiment. Right: Proportion of SEs in each of the six eCLIP+ types for each eCLIP 

experiment. Bottom: Classification of eCLIP+ peaks into RBNS+ and RBNS- based on the 

presence of the top RBNS 5mer, shown here for two of the KHSRP peaks in HepG2 cells. 

(d) Same set of RBPs and corresponding eCLIP+ peak region/SE splicing change types as used 

in Fig. 3c, but separating eCLIP peaks on whether they contain the top ‘eCLIP-only’ 5mer (based 

on the motifs from Extended Data Fig. 10b) instead of the top RBNS 5mer. 

(e) As in Fig. 3c, but shown for RBP-activated SEs (decreased inclusion upon RBP knockdown). 
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Extended Data Figure 12 | Gene expression changes upon RBP knockdown in HepG2 cells. 
Each row indicates summary statistics for an RBP knockdown followed by RNA-seq dataset in 

HepG2 cells. Bars indicate (left) the number and magnitude of differentially expressed genes, 

(center) the type of regulation and (right) the knockdown level of the targeted RBP protein and/or 

mRNA. The magnitudes of differential expression were defined as strong (fold-change ≥ 4), 

Moderate (2 < fold-change < 4) and weak (fold-change ≤ 2). (center) Bars indicate the fraction of 

differentially expressed genes (red) increased or (blue) decreased upon RBP knockdown. (right) 

Bars indicate the percent knockdown of the RBP mRNA observed by qPCR and protein observed 

by Western blot analysis.  
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Extended Data Figure 13 | Gene expression changes upon RBP knockdown in K562 cells. 
Each row indicates summary statistics for an RBP knockdown followed by RNA-seq dataset in 

K562 cells. Bars indicate (left) the number and magnitude of differentially expressed genes, 

(center) the type of regulation and (right) the knockdown level of the targeted RBP protein and/or 

mRNA. The magnitudes of differential expression were defined as strong (fold-change ≥ 4), 

Moderate (2 < fold-change < 4) and weak (fold-change ≤ 2). (center) Bars indicate the fraction of 

differentially expressed genes (red) increased or (blue) decreased upon RBP knockdown. (right) 

Bars indicate the percent knockdown of the RBP mRNA observed by qPCR and protein observed 

by Western blot analysis.  
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Extended Data Figure 14 | Association between RBP binding and RNA expression upon 
knockdown. 
(a) Color indicates the significance of overlap between genes differentially expressed upon 

knockdown of an RBP and target genes with significant enrichment for 5’UTR, CDS, or 3’UTR 

regions in eCLIP of the same RBP in the same cell type. Shown are all 203 pairings of knockdown-

RNA-seq and eCLIP performed in the same cell type. Dashed boxes indicate comparisons with 

less than 10 genes altered in RNA-seq. The background gene set for each comparison was 

chosen by taking genes with at least 10 reads in one of IP or input, and where at least 10 reads 

would be expected in the comparison dataset given the total number of usable reads.  

(b-c) Red points indicate significance of overlap between eCLIP and knockdown RNA-seq for the 

34 significant overlaps (multiple hypothesis corrected p-value £ 0.05), showing only the most 

significantly enriched region from (a). Black points indicate knockdown RNA-seq datasets 

compared against enrichments for the same transcript region for (b) eCLIP datasets for RBPs 

within the same binding type class (as identified in Fig. 2b), or (c) all eCLIP datasets in the same 

cell type. 
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Extended Data Figure 15 | Association between RBP binding and RNA expression upon 
knockdown. 



Van Nostrand et al. 

 90 

(a) Lines indicate cumulative distribution plots of gene expression fold-change (UPF1 knockdown 

versus control) for indicated categories of UPF1 eCLIP enrichment in K562 cells. 

(b-c) METAP2 K562 eCLIP region-level enrichment at 3’UTR, CDS, intronic, and non-coding 

exonic regions. (b) Points indicate read density in (x-axis) input versus (y-axis) fold-enrichment in 

METAP2 eCLIP for indicated transcript regions of all GENCODE v19 genes. Significantly enriched 

regions (p ≤ 10-5 and fold-enrichment ≥ 4) are indicated by open circles. (c) Histogram of METAP2 

eCLIP fold-enrichment for the indicated transcript regions. 

(d) Genome browser view of eCLIP and knockdown RNA-seq read density for METAP2 

experiments in K562 cells for VIM. Read density is shown in reads per million (RPM). 

(e) Cumulative distribution plots of gene expression fold-change (TIA1 knockdown versus control 

in HepG2 cells) for indicated categories of 3’UTR TIA eCLIP enrichment. 

(f-g) Position-specific frequency of the top 10 TIA1 RBNS 5mers in the last 50 positions of the 

CDS and in a meta-3’UTR of (red) up-regulated, (blue) down-regulated, and (black) control genes 

upon TIA1 knockdown in (f) K562 and (g) HepG2 cells. Positions of motif density significantly 

different in up- or down-regulated genes relative to control genes are indicated below the x-axis 

(calculated using a binomial test comparing the number of regulated genes that do versus do not 

have one of the top 10 RBNS 5mers at that position versus the frequency observed in control 

genes). 

(h) Points indicate fold-enrichment (log2) between IP and input for 3’UTR regions of all genes 

meeting minimal read depth requirements (at least 10 reads in one of IP or input, and where at 

least 10 reads would be expected in the comparison dataset given the total number of usable 

reads, were considered) in (x-axis) K562 and (y-axis) HepG2 cells. Points in green indicate genes 

that had both significant eCLIP enrichment in K562 cells and differential expression upon TIA1 

knockdown in K562 cells. 

(i) Points indicate fold-change (log2) in expression between TIA1 knockdown and control RNA-

seq for the set of genes with both significant eCLIP enrichment in K562 cells and differential 

expression upon TIA1 knockdown in K562 cells. 
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Extended Data Figure 16 | Alternative splicing changes upon RBP knockdown RNA-seq in 
HepG2 cells. 
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Each row indicates summary alternative splicing statistics for an RBP knockdown followed by 

RNA-seq dataset in HepG2 cells. Bars indicate (left) the number and magnitude of differentially 

spliced events, (center-left) the fraction of each type of alternative splicing event, (center) the 

percent of events observed that are present in GENCODE v19, (center-right) the fraction of 

cassette exons that are either included or excluded, and (right) the knockdown level of the 

targeted RBP mRNA and protein by qPCR and Western blot analysis. The magnitudes of 

differential splicing were defined as weak (|d-PSI| = 5% - 15%), moderate (|d-PSI| = 15% - 30%) 

or strong (|d-PSI| >= 30. The affected alternative event types are SE (skipped exon), MXE 

(mutually exclusive exons), A5SS (alternative 5’ splice site), A3SS (alternative 3’ splice site), RI 

(retained intron) and TANDEMUTR (tandem 3’ UTR). 
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Extended Data Figure 17 | Alternative splicing changes upon RBP knockdown RNA-seq in 
K562 cells. 
Each row indicates summary alternative splicing statistics for an RBP knockdown followed by 

RNA-seq dataset in K562 cells. Bars indicate (left) the number and magnitude of differentially 

spliced events, (center-left) the fraction of each type of alternative splicing event, (center) the 

percent of events observed that are present in GENCODE v19, (center-right) the fraction of 

cassette exons that are either included or excluded, and (right) the knockdown level of the 

targeted RBP mRNA and protein by qPCR and Western blot analysis. The magnitudes of 

differential splicing were defined as weak (|d-PSI| = 5% - 15%), moderate (|d-PSI| = 15% - 30%) 

or strong (|d-PSI| >= 30. The affected alternative event types are SE (skipped exon), MXE 

(mutually exclusive exons), A5SS (alternative 5’ splice site), A3SS (alternative 3’ splice site), RI 

(retained intron) and TANDEMUTR (tandem 3’ UTR). 
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Extended Data Figure 18 | Generation of splicing maps for RBFOX2. 
(a) First, individual RBP-regulated splicing events are identified from significant changes in 

knockdown RNA-seq. Genome browser tracks indicate RNA-seq read density (as reads per 

million (RPM)) and eCLIP read density (RPM) of RBFOX2 in the same cell type, as well as its 

paired size-matched input. 

(b) Next, each exon is normalized between IP versus input to obtain ‘Normalized eCLIP 

enrichment’. The heatmap indicates normalized eCLIP enrichment for all exons significantly 

excluded upon RBFOX2 knockdown. 

(c) Next, a ‘splicing map’ is created by calculating the mean and standard error of the mean of 

normalized eCLIP enrichment for each position across the region, removing the top and bottom 

5% outlier values at each position. Lines in splicing map indicate ‘Average eCLIP enrichment’, 

defined as the mean normalized eCLIP enrichment for exons (red) included or (blue) excluded 

upon RBFOX2 knockdown. Also plotted are (purple) a control set of cassette exons (referred to 

as ‘native' cassette exons) in wild-type HepG2 cells and (black) constitutive exons. Shaded area 

indicates 0.5th to 99.5th confidence interval obtained by 1000 random samplings of the native 

cassette exon control set (performed independently using the number of events in either excluded 

or included sets, and plotting the larger of the two confidence intervals). 

(d) A final simplified splicing map vector was calculated by subtracting the normalized eCLIP 

enrichment of control native cassette exons from that of either included or excluded exons at each 

position to calculate ‘Enrichment relative to control events’. 
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Extended Data Figure 19 | Integration of eCLIP and knockdown RNA-seq to identify 
splicing regulatory patterns.  
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(a) As in Figure 5b, heatmap indicates the difference between normalized eCLIP read density at 

cassette exons excluded (left) or included (right) upon RBP knockdown, versus native cassette 

exons. Out of 203 pairings of eCLIP and knockdown/RNA-seq in the same cell type (139 RBPs 

total), shown are 92 pairings (72 RBPs) with at least 100 significantly included or excluded events. 

Outer heatmap indicates positions at which the signal exceeds the 0.5th to 99.5th confidence 

interval obtained by 1000 random samplings of the same number of events from the native 

cassette exon control set. Bar graphs indicate the number of RBP knockdown-altered cassette 

exons for each comparison. Datasets were hierarchically clustered at the RBP-level, and datasets 

with less than 100 events are indicated by slashed lines. 

(b) Relative splicing maps for cassette exons included (left) and excluded (right) upon knockdown 

(as described in Fig. 5b) are shown for all profiled SR and hnRNP proteins. Datasets were 

hierarchically clustered at the RBP-level, and datasets with less than 100 events are indicated by 

slashed lines. 

(c-d) Heatmap indicates correlation (Pearson R) between splicing maps for (c) knockdown-

excluded or (d) knockdown-included exons for RBPs profiled in both K562 and HepG2 cells, 

hierarchically clustered at the RBP level. 

(e) Plot represents the distribution of Pearson correlations between splicing maps as shown in (c-

d), separated by whether the comparison is between the same RBP or different RBPs profiled in 

two different cell types. Different RBPs are shown as smoothed histogram using a Normal kernel, 

and red line indicates mean. Significance was determined by Kolmogorov-Smirnov test. 

(f) Lines indicate the average number of RBPs with reproducible eCLIP peaks (out of 223 total 

datasets) in 50nt exonic and 500nt intronic regions flanking splice sites, separated by whether the 

RBP is (top) annotated as a spliceosome component or (bottom) all other RBPs.  
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Extended Data Figure 20 | Cross-RBP splicing maps. 
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(a) Similar to Fig. 5b, knockdown-altered cassette exons were identified for each RNA-seq 

experiment. However, for this analysis normalized eCLIP read density at cassette exons (left) 

excluded or (right) included upon RBP knockdown versus native cassette exons was calculated 

separately for all RBPs within the same RBP class (identified in Fig. 2b). The heatmap then 

indicates the difference between the normalized eCLIP signal for the shRNA-targeted RBP versus 

the mean of normalized eCLIP signal for all other RBPs within that class. Shown are all 92 pairings 

of RBPs with eCLIP and knockdown RNA-seq data and at least 100 included or excluded altered 

events, with dashed lines indicating datasets with less than 100 significantly altered events.  

(b) Heatmap indicates normalized eCLIP signal at HNRNPC knockdown-induced exons in HepG2 

cells relative to native cassette exons for HNRNPC (top) and all other RBPs within the same 

binding class and cell type (bottom). 

(c) (left) as in (b) for RBFOX2 knockdown-excluded exons in HepG2 cells. (right) lines indicate 

normalized signal tracks for eCLIP replicates of RBFOX2 and QKI. Black indicates mean of all 

non-RBFOX2 datasets, with the 10th to 90th percentile indicated in grey. 

(d) For each of 138 RBFOX2 knockdown-excluded cassette exons in HepG2 cells, points indicate 

(x-axis) normalized RBFOX2 eCLIP enrichment at the +60nt position of the downstream intron 

versus (y-axis) normalized QKI eCLIP enrichment at the +150nt position of the downstream intron 

(as indicated by arrows in (c)).  

(e) Points indicate average change in percent exon inclusion (ΔΨ) in two replicates of RBFOX2 

knockdown (x-axis) and QKI knockdown (y-axis) in HepG2 cells. Shown are all exons which were 

significantly altered (p-value < 0.05, FDR < 0.1, and |ΔΨ| > 0.05) from rMATS analysis of either 

RBFOX2 or QKI, and then were further required to have at least 30 inclusion or exclusion reads 

in both replicates and average |ΔΨ| > 0.05 for both RBFOX2 and QKI knockdown. Significance 

was determined from correlation in MATLAB. 

(f) as in (b) for TIA1 knockdown-included exons in HepG2 cells. 

(g) Western blot for (left) TIAL1 and (right) TIA1 of immunoprecipitation performed with IgG, TIA1 

(RN014P, MBLI), and TIAL1 (RN059PW, MBNL) primary antibody. 

(h) as in (e) for TIA1 and TIAL1 in HepG2 cells.  
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Extended Data Figure 21 | RNA maps for alternative 5' and 3’ splice sites. 
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(a) Heatmap indicates enrichment at RBP-responsive alternative 5’ splice site events relative to 

native alternative 5’ splice site events for all RBPs with eCLIP and knockdown RNA-seq data that 

showed a minimum of 50 significantly changing events upon knockdown. The region shown 

extends 50 nt into exons and 300 nt into introns. Outer heatmap indicates positions at which the 

signal exceeds the 0.5th to 99.5th confidence interval obtained by 1000 random samplings of the 

same number of events from the native alternative 5’ splice site control set.  

(b) Heatmap indicates positions at which the signal exceeds the 0.5th to 99.5th confidence interval 

obtained by 1000 random samplings of the same number of events from the native alternative 3’ 

splice site control set. 

(c) Heatmap indicates normalized eCLIP signal for SF3B4 in HepG2 cells at alternative 3’ splice 

site events either (top) alternatively spliced in wild-type cells or (bottom) events with increased 

usage of the extended 3’ splice site upon SF3B4 knockdown. The region shown extends 50 nt 

into exons and 100 nt into introns. 

(d) Lines indicate mean normalized eCLIP enrichment in IP versus input for SF3B4 and SF3A3 

at (red/purple/green) alternative 3’ splice site extensions in RBP knockdown or (black) alternative 

3’ splice site events in control HepG2 or K562 cells. The region shown extends 50 nt into exons 

and 100 nt into introns. 

(e) Model for SF3B4 and SF3A3 blockage of 3’ splice site recognition by U2AF. At SF3-blocked 

alternative 3’ splice site events, knockdown of SF3 components leads to either usage of the 

upstream (proximal) 3’ splice site, or retention of the intron. 
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Extended Data Figure 22 | Comparison between RBP DNA and RNA association 
(a) Heatmap indicates the relative enrichment of overlap between RBP ChIP-seq peaks and 

peaks for indicated histone modifications, column-normalized by ‘scale’ in the R heatmap function. 

(b) Heatmap indicates jaccard indexes between ChIP-seq peaks of different RBPs at promoter 

regions (bottom left) or non-promoter regions (top right) are displayed as heatmap for K562 cells.  

(c) (left) Heatmap indicates the fraction of genes (extended 500nt upstream of the TSS and 500nt 

downstream of the TTS) overlapped by a ChIP-seq peak for each RBP for the set of genes in (x-

axis) seven bins of increasing gene expression from RNA-seq in HepG2 cells. (center and right): 

Bars indicate the odds ratio for overlap between RBP ChIP-seq peak presence and (center) 

differentially-expressed genes or (right) significant alternative splicing changes upon knockdown 

of the same RBP. * indicates p-value<0.05 as determined by 100 random samplings of genes 

with similar expression levels.  
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Extended Data Figure 23 | eCLIP binding patterns in subcellular space 

(a) Bars indicate fold-enrichment for the 45S ribosomal RNA precursor observed for 8 RBPs with 

eCLIP data, nucleolar localization observed in immunofluorescence imaging, and no human RNA 

processing function identified in literature searches. 

(b) Points indicate (x-axis) nuclear versus cytoplasmic ratio from immunoflourescence (IF) 

imaging versus (y-axis) ratio of spliced versus unspliced exon junction reads, normalized to paired 

input. RBPs profiled by eCLIP and IF in HepG2 cells are indicated in blue, and RBPs profiled by 
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eCLIP in K562 cells (in purple) were paired with IF experiments performed in Hela cells. eCLIP 

data shown is from replicate 1. 

(c) Points indicate values as in (a), with RBPs separated into nuclear (nuclear / cytoplasmic ratio 

≥ 2) and cytoplasmic (nuclear / cytoplasmic ratio ≤ 0.5). Significance was determined by 

Kolmogorov-Smirnov test, and red line indicates mean. eCLIP data shown is from replicate 1. 

(d) Points indicate the number of differential splicing events observed upon knockdown of each 

RBP, separated by the presence or absence of localization in (left) nuclear speckles or (right) 

nuclear but not nuclear speckles. Significance was determined by Kolmogorov-Smirnov test. 

(e) Cumulative distribution curves indicate total relative information content for the mitochondrial 

genome for RBPs with mitochondrial localization by IF (red) and all other RBPs (grey). 

Significance was determined by Kolmogorov-Smirnov test. 

(f) Heatmap indicates DHX30 eCLIP enrichment across all exons for all mitochondrial protein-

coding and rRNA transcripts.* indicates significant eCLIP signal (fold-enrichment ≥ 4 and p ≤ 

0.00001 in IP versus input). 
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Table legends 
Supplementary Data 1. Manual annotation of RBP functions. 
Supplementary Data 2. ENCODE accession identifiers of datasets used. 
Supplementary Data 3. RBP gene expression in ENCODE cell lines and tissues. 
Supplementary Data 4. Summary information for eCLIP experiments. 
Supplementary Data 5. Summary information for RNA-seq experiments. 
Supplementary Data 6. Summary information for RBNS experiments. 
Supplementary Data 7. Summary information for ChIP-seq experiments. 
Supplementary Data 8. Automated and manual quality assessment of eCLIP datasets. 
Supplementary Data 9. Summary information for questionable quality eCLIP experiments. 
Supplementary Data 10. Summary information for eCLIP experiments failing quality 
assessment. 
Supplementary Data 11. eCLIP blacklist regions. 
Supplementary Data 12. Overlap between eCLIP and ChIP-seq peaks. 
Supplementary Data 13. eCLIP adapters used. 
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