
RBP-Maps enables robust generation of splicing
regulatory maps

BRIAN A. YEE,1,2 GABRIEL A. PRATT,1,2,3 BRENTON R. GRAVELEY,4 ERIC L. VAN NOSTRAND,1,2

and GENE W. YEO1,2,3

1Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, USA
2Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA
3Bioinformatics and Systems Biology Graduate Program, University of California at San Diego, La Jolla, California 92093, USA
4Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, Connecticut 06030, USA

ABSTRACT

Alternative splicing of pre-messenger RNA transcripts enables the generation of multiple protein isoforms from the same
gene locus, providing amajor source of protein diversity inmammalian genomes. RNAbinding proteins (RBPs) bind to RNA
to control splice site choice and definewhich exons are included in the resultingmature RNA transcript. However, depend-
ing on where the RBPs bind relative to splice sites, they can activate or repress splice site usage. To explore this position-
specific regulation, in vivo binding sites identified by methods such as cross-linking and immunoprecipitation (CLIP) are
integrated with alternative splicing events identified by RNA-seq or microarray. Merging these data sets enables the
generation of a “splicing map,” where CLIP signal relative to a merged meta-exon provides a simple summary of the po-
sition-specific effect of binding on splicing regulation. Here, we provide RBP-Maps, a software tool to simplify generation
of thesemaps and enable researchers to rapidly query regulatory patterns of an RBPof interest. Further, we discuss various
alternative approaches to generate such splicing maps, focusing on how decisions in construction (such as the use of peak
versus read density, or whole-reads versus only single-nucleotide candidate crosslink positions) can affect the
interpretation of these maps using example eCLIP data from the 150 RBPs profiled by the ENCODE consortium.
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INTRODUCTION

After RNA is transcribed fromDNA, intronic regions are re-
moved and exons are joined together in the process of
splicing. Most exons are constitutively spliced, meaning
they are always included in the mature RNA transcript
that is ultimately translated. However, recent estimates
indicate that nine out of every 10 human genes undergo al-
ternative splicing in which alternative splice sites are uti-
lized in a cell type- or condition-specific manner to create
distinct RNA transcripts from the same pre-mRNA mole-
cule (Wang et al. 2008). The key role of alternative splicing
is further confirmed by the linkage of splicing regulation
to numerous humandiseases, includingneurological disor-
ders and many types of cancer (Scotti and Swanson 2016).
Thus, understanding the regulatory patterns that control al-
ternative splicing can give valuable insights into a variety of
biological systems.

RNA binding proteins (RBPs) interact with RNA through
recognition of sequence motifs, structures, and combi-
nations thereof to regulate condition-specific alternative
splicing. Thus, identifying the direct in vivo targets of
RBPs can give insight into their mechanism of regulation.
Most commonly, this is done through cross-linking and im-
munoprecipitation (CLIP), whichpulls downanRBPof inter-
est alongwith its bound RNA (Lee and Ule 2018). However,
although in vivo targets in isolation can yield insights into
potential roles for an RBP, integration of this data with
RBP-responsive targets allows the identification of directly
regulated targets, which can provide a deeper understand-
ing of the mechanisms of regulation by an RBP. For regula-
tion of alternative splicing, where RBP binding can cause
either inclusion or exclusion of alternative exons, it is com-
mon to identify RBP-responsive events by knocking down
or over-expressing the RBP and performing RNA-seq.
Following sequencing, several algorithms have been de-
veloped to discover changes in splicing among transcripts
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between conditions (Katz et al. 2010; Shen et al. 2014).
These algorithms detect common splicing events, includ-
ing skipped exons (SE), alternative 3′ and 5′ splice sites
(A3SS, A5SS), retained introns (RI), and mutually exclusive
exons (MXE), all of which contribute to increased diversity
of the human proteome.

In addition to simple overlaps between the lists of RBP-
responsive events and RBP-bound regions, it has become
common to specifically query how the positional depen-
dence of binding differentially affects alternative splicing
of nearby events. Visualization of this location-dependent
splicing regulatory information is often referred to as a
“splicing map,” which has become an important tool to vi-
sualize RNA binding activity over a collective set of geno-
mic regions (Witten and Ule 2011). For a given splice
type, a meta-event is typically shown to visualize global
binding across alternatively spliced (AS) exons containing
a composite signal across a set of events. These meta-
events are often comprised of vectorized windows aligned
to the splice site and the flanking proximal exon/intron re-
gion (Yeo et al. 2009; Limet al. 2011; Hauer et al. 2015). For
example, SE events are typically represented as four win-
dows showing all upstream splice sites, all 5′ and 3′ splice
sites of the cassette exon, and downstream splice sites,
plus corresponding surrounding regions (usually 50 nt
into the exon, 200–300 nt into the intron) (Xue et al.
2009; Witten and Ule 2011; Cereda et al. 2014; Park et al.
2016). Analogous approaches can be used to visualize
the other types of splicing events as well, focusing on the
splice site regions associated with the meta-event type.

In particular, splicing maps which overlap RBP binding
with AS events from RNA-seq provide insight into how
RBPs can regulate these events differently depending on
where they associate (Witten and Ule 2011). Early on, these
maps were made by using motif enrichment as a proxy
for RBP association, showing for example that the RBFOX
family of RBPs appeared to encourage exon inclusion if
associated downstream but increased exon exclusion if
associated upstream (Yeo et al. 2009). However, these ap-
proaches are limited to RBPs with well-characterized bind-
ing motifs, which remains a small subset of RBPs overall.
The use of CLIP to profile protein–RNA interactions directly
has led to a rapid expansion of this area, with maps gener-
ated for a variety of RBPs that reveal a complex regulatory
specificity for RBPs based on their location of binding
(Witten and Ule 2011). However, due to the variety of
CLIP-seq technologies and their current limitations, there
remains a lack of consensus on numerous details regarding
the calculations underlying the generation of such maps
(Wheeler et al. 2017; Lee and Ule 2018).

Recently, the ENCODE project published eCLIP data
sets for 150 RBPs across K562 and HepG2 cell types, as
well as identification of alternative splicing for shRNA
knockdown of 263 RBPs in HepG2 and K562 cell types
(Van Nostrand et al. 2016, 2017a). As part of this effort to

perform integrated analyses of RNA processing to map
splicing regulatory patterns, we observed that many deci-
sions could significantly alter the interpretation of the
subsequent splicing map. Here, we describe RBP-Maps
(https://github.com/yeolab/rbp-maps) a robust software
tool to standardize the generation of these maps from
ENCODE and other data sets in order to enable integra-
tion of CLIP and RNA-seq for nonexpert users. Further,
we discuss numerous analysis options enabled by this
tool, and how these decisions can shape the downstream
generated splicing map.

RESULTS

Generation of splicing regulatory maps
with RBP-Maps

To enable simplified generation of splicing regulatory
maps for the ENCODE eCLIP and RNA-seq data sets, we
developed the RBP-Maps software package. At its core,
the program intersects a CLIP data set provided by the
user (either read densities in the form of bigwig coverage
files or peaks in the form of bed files) and intersects them
with any number of user-defined alternative splicing event
files (Fig. 1A). The program then outputs a normalized sum-
mary figure displaying the average signal across all events
(Fig. 1B), including data matrices containing the raw and
normalized signal values for each event, as well as the
mean across all events, for each position in the meta-exon
map as a comma separated file in order to facilitate fur-
ther downstream processing. The RBP-Maps package is
publicly available (https://github.com/yeolab/rbp-maps),
and contains details regarding installation setup require-
ments, usage, and examples for different alternative event
types (including cassette or SE, A5SS, A3SS, MXE, and RI).

As an essential component of this software, we have also
provided a number of additional options, including read
density normalization, window size, density outlier removal
options, statistical significance calculation, and incorpora-
tion of multiple background event lists. In the following
sections, we discuss how each of these options can affect
the resulting splicing map and provide recommendations
for usage.

Avoidance of duplication within RBP-responsive
events

The first decision in the generation of a splicing map is the
selection of set(s) of alternative events, which is specified
by the “‐‐annotations” option. By default, alternative splic-
ing input files are in the rMATS JunctionCountsOnly.txt file
format (for SE, RI, A3SS, A5SS, and MXE event types).
However, support is also available for the MISO format
(Katz et al. 2010; Shen et al. 2014), and alternative events
from other splicing quantitation tools can be used by
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simply reformatting the list into the rMATS event output
format. Any number of event lists can be provided, each
of which will be separately processed and plotted together
in the subsequent splicing map. This enables the user to
include not only the experimental event set (for example,
events included or excluded upon RBP knockdown), but
also various control sets of constitutive or alternative exons

not responsive to the RBP for comparison purposes (see
further discussion below).
We have found that outputs from many standard RNA-

seq splicing analysis tools require pruning of events in or-
der to avoid duplication of CLIP signals in the resulting
splicing map, as some software reports multiple “events”
for the same gene that in fact overlaps (often due to these

A

C

B

FIGURE 1. Splicing maps reveal position-dependent correlation between RBP binding and RBP-responsive targets. (A) Models showing
(top) RNA-seq junction reads quantitating exon inclusion or exclusion and (bottom) eCLIP reads identifying “peaks” as regions of enrichment.
(B) Example derivation of a splicing map. (Top) RNA-seq read density (in reads per million [RPM]) in RBFOX2 shRNA knockdown and (bottom)
RBFOX2 eCLIP read density and peaks (enriched in immunoprecipitation versus paired input) for exon 7 in MALT1 (ENST00000348428.3) in
HepG2 cells. (C ) Integration across 138 RBP-responsive (excluded upon knockdown) events yields an averaged splicingmap for (top) read density
or (bottom) peak density.
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events sharing one [or multiple] exon–exon junctions). As a
consequence, distinct splicing events can share genomic
coordinates, which would result in integrating the same
eCLIP signal multiple times in the subsequent regulatory
map. We observed that these overlapping events account-
ed for an average of 22% of the total number of events re-
ported by rMATS among all submitted ENCODE data sets
(Fig. 2A), suggesting that there could be significant dou-
ble- (ormore) countingof single eCLIP peaks if overlapping
events were not removed. Therefore, we group overlap-
ping events and select the event with the highest inclusion

junction count (IJC) as the resolved unique event to be in-
corporated into the splicing map using the included
subset_rMATS_ junctioncountsonly.py script (Fig. 2B). We
observed that the most common source of these events
were exons which shared exclusion junctions and had vari-
able 5′ or 3′ splice sites, many of which had extremely low
inclusion levels.

To show the effect on an example splicing map, we con-
sidered ZC3H8 in K562 cells. Plotting Z3CH8 CLIP against
an unfiltered set of 239 events identified as significantly in-
cluded (change in percent spliced in (|ΔΨ|)≥0.05, FDR≤

A D

B

C

E

F

FIGURE 2. Event-driven options in creating splicing maps. (A) Boxplot indicates the distribution across 473 RBP knockdown RNA-seq data sets
separated into included and excluded sets of events for the fraction of event regions that overlap one, two, or three ormore differential event calls
identified by rMATS. (B) Schematic indicates multiple overlapping events within one event region. The event with the highest IJC is kept as the
resolved “unique event.” (C ) Example splicing map for ZC3H8 (in K562 cells) showing the difference in the resulting mapmade by either (purple)
including all rMATS-identified differential events or (pink) after discarding overlapping events. A set of natively included cassette exons which
show exons that are included (≥67% percent spliced in/Ψ) in at least 50% of control RNA-seq experiments is shown in gray. (D) Splicing maps
shown for (top) RBFOX2 in HepG2 and (bottom) SRSF9 in HepG2 cells. Maps made based on density of significantly enriched eCLIP peaks
are shown in orange, with maps made using read density shown in blue. (E) Points indicate (x-axis) the number of significant RBP-responsive
AS events versus (y-axis) the fraction with eCLIP peaks overlapping the event. Colors indicate RBP function annotations. (F ) Violin plot indicates
the number of RBP peaks overlapping RBP-responsive events for 203 eCLIP and knockdown RNA-seq comparisons. Shown are distributions for
peaks at least twofold or eightfold enriched in IP versus paired input.
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0.1 and P≤0.05) upon knockdown of ZC3H8 causes a
peak in the global signal in the proximal upstream intron
of the meta-downstream exon (Fig. 2C). However, this ap-
pears to be the result of intersecting CLIP signal multiple
times across 50 overlapping events, as this peak was no
longer observed when we removed overlapping events.
Thus, we have found that such double-counting of eCLIP
signal can cause artifacts in splicing maps if not properly
accounted for.

Reads versus peaks

There are two major alternative approaches to how CLIP
signal is utilized in a splicing map: as either read density
(in various processed or normalized forms) or as the density
of significantly enriched peaks. To enable researchers to
implement both of these approaches, RBP-Maps can run
in two modes: ‐‐peak mode (which takes a bigbed file
that describes significantly enriched regions of CLIP signal
identified from any standard CLIP analysis toolkit), and
‐‐density mode (which accepts read densities formatted
as two standard bigwig files, one for each strand).
Conversion of read density into computationally identi-

fied peaks or clusters, using one of a variety of peak-calling
algorithms, is a standard step of CLIP analysis (De and
Gorospe 2017). The use of peaks provides two appealing
benefits for simplified creation of splicing maps. First,
because peaks identify regions where immunoprecipita-
tion (IP) signal is significantly enriched over a background
model, they mitigate noise in read density signal by focus-
ing on regions of significant enrichment (Park et al. 2016).
Second, by compressing the CLIP signal to a single binary
value indicating the presence of a peak at each position,
each event is weighted equally in the resulting average sig-
nal trace, removing theneed for furthernormalizationof the
CLIP signal to control for relative abundance or differential
enrichment.
For peak-based maps, a count of peaks that overlap AS

regions is plotted as a histogram at every position, with the
final value as the fraction of events that contain a peak at
each position (i.e., the total count divided by the number
of regions). Considering the ENCODE data set, we ob-
serve that a subset of RBPs show clear splicingmaps based
on peak density alone: For example, RBFOX2 shows en-
richment for peaks downstream from the 5′ splice site of
knockdown-excluded exons (Fig. 2D). Thus, for some suf-
ficiently deeply sequenced CLIP data sets from proteins
with distinct binding patterns, peak-based maps offer the
most succinct way of integrating CLIP and alternative splic-
ing data (Fig. 2D). These RBPs typically bind directly to, or
near splice sites and provide high position-specific overlap
between splice events and CLIP peak regions, yielding a
consistent signal across the meta-event.
However, we noted that other RBPs had results that var-

ied between peak- and read-based maps. For example, a

map based on read density for SRSF9 in HepG2 cells
showedenrichment at knockdown-excludedexons, consis-
tent with the general role of SR proteins as enhancing exon
inclusion (Ibrahim et al. 2005). However, a peak-basedmap
provides limited insight, as only four knockdown-excluded
exons are overlapped by a significantly enriched reproduc-
ible eCLIP peak (Fig. 2D). This is a common occurrence
among ENCODE data sets, as the mean percentage of
peaks intersecting RBP knockdown-altered SE regions (3′

end of the upstream exon to the 5′ end of the downstream
exon) is <1% (with a slightly higher average of 1.3% and
1.9% for known splicing regulators and spliceosomes, re-
spectively), limiting the power of the peak-based approach
(Fig. 2E). Evendecreasing the stringency threshold for peak
identification from eightfold to only twofold enriched in IP
versus input background yields only a slight increase in the
median number of peaks overlapping events from 4 to 12
(Fig. 2F). Thus, even though peak-based maps are often
simpler (both conceptually as well as computationally),
read density-based maps remain highly useful due to in-
creased signal (Fig. 2D). In both cases, 50–100 or more
AS events are generally required to yield robust maps.

Read density-based approaches: normalization

Splicing regulatorymaps based off of read density are gen-
erated by RBP-Maps ‐‐densitymode, in which the user data
are provided as bigwig format read density files (one for
each strand) for both IP and (if available) paired input (or
other control) experiments. However, read density does
not inherently include normalization against background
or provide regions of enrichment as compared to peaks.
Therefore, we havemade three CLIP density normalization
options available as part of ‐‐density mode in RBP-Maps:
“raw” values (option [0]), which illustrates a splicingmapus-
ing just CLIP read densities (and is the same method used
for peak-based maps), “subtraction” normalization (option
[1], default for density), which subtracts normalized size-
matched input read densities from its corresponding CLIP
IP read density, and “entropy” normalization (option [2]),
which calculates information content-based fold enrich-
ment of CLIP read density over corresponding input.
We observe that in some instances, density maps look

similar regardless of normalization method. This is particu-
larly true in cases where size-matched input background is
low, as is the case for intronic-binding RBPs that are often
being profiled in studies of splicing regulatory networks.
For example, subtracting input from the CLIP signal from
an RBFOX2 skipped/cassette exon map yields little dif-
ferences in peak position, aside from changes in scaling
(Fig. 3A). However, experiments that include a size-
matched input can leverage this information to correct for
common background artifacts, including the typical obser-
vation of nonenriched read density at abundant exonic re-
gions (VanNostrandet al. 2016). Indeed, applyingdifferent
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normalization methods to an HNRNPK splicing map does
change the shape of binding upstream and downstream
from the cassette exon (Fig. 3C–F). Thus, although using

IP read density only can yield reasonable splicing
regulatory maps, incorporation of a paired input is
recommended.

A C

D

E

F

B

G H

FIGURE 3. Strategies for normalizing read density maps against an input background. (A) Curves indicate splicing maps generated for cassette
exons excluded upon RBFOX2 knockdown using either (pink) eCLIP read density alone or (blue) normalized read density after comparing eCLIP
read density versus size-matched input sample. (B) Schematic of the “background subtraction” versus the “information content” normalization for
a single example event. (Top) In the “background subtraction” approach, input read density is subtracted from immunoprecipitation (IP) read
density, then is normalized against area under the curve represented by read density. (Bottom) In the “information content” approach, read den-
sity is normalized to the fraction of total reads in the data set, followed by calculation of a relative information value at each position between IP
and input. (C–F) Lines indicate differences observed upon generating splicing maps for excluded events upon HNRNPK knockdown using differ-
ent inputs and normalization methods: (C ) read density in eCLIP only, (D) read density of size-matched input only, (E) “background subtraction”
normalization, and (F ) “information content” normalization. (G) Heatmap shows (top) information content-normalized values and (bottom) corre-
sponding average across the 5′ splice site region of a meta-cassette exon for TIA1 (HepG2). (H) As in G, but shown for background-subtraction
normalized values.
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To consider the effect of normalization methods, we
compared two strategies: background subtraction and
a “relative information” enrichment method based on
an adaption of relative entropy (Fig. 3B). The subtrac-
tion method first calculates the difference between den-
sity values of the IP and its corresponding input, then
scales these values for each event to sum to one, equal-
izing each region’s contribution to the overall splicing
map in a manner similar to existing normalization meth-
ods (Licatalosi et al. 2008). This prioritizes the global rel-
ative shape of binding enrichment (Fig. 3E). In contrast,
we tried a second method in which we did not normal-
ize per event, but instead calculated the relative in-
formation in IP versus input at each position for each
event as

pi × log2
pi

qi

( )
,

based off Kullback–Leibler diver-
gence, where pi and qi are the fraction
of total reads in IP and input, respec-
tively, which map overlapping posi-
tion i. The final averaged map was
then calculated as the position-wise
mean over these information scores
across all events (Fig. 3F). This relative
information approach maintains the
strength of binding, meaning that
events with greater read density will
dominate the final average.
As expected, we found that the

summarized map using the informa-
tion content-based method would of-
ten be highly dominated by highly
abundant CLIP signals at only a small
numberof events (Fig. 3G). In contrast,
the subtraction method proved to
be an effective approach, yielding
more robust signals than peak-based
maps while being more resistant to
over-weighting single events (Fig. 3H).
Thus, the subtraction method provides
a mechanism to incorporate paired
size-matched input into the standard
read density-based splicing regulato-
ry map framework. Although we fo-
cused on normalization against a
paired input here, we note that these
approaches can be similarly applied
to compare enrichment against paired
IgG or knockout controls. However,
other experimental designs may re-
quire customization as necessary.

Outlier removal

Particularly with the relative information content method,
we observed that individual highly abundant positions at
single events could dominate the composite signal.
Manual inspection suggested that these typically arose
fromsnRNAs,miRNAs, andothermulticopyor highly abun-
dant transcripts or pseudogenes present within these
intronic regions. For example, we observed a single site
of significant enrichment∼250bpdownstream fromknock-
down-excluded SE inHNRNPC splicemaps (Fig. 4A). Upon
further inspection, we noticed that this signal came exclu-
sively from a single event near a snoRNA (Fig. 4B). To ad-
dress this, we performed outlier removal on the top and
bottom 2.5% signal at each position across each splicing
map, which removed extreme outliers and revealed signal
consistent with the splicing-repressive role of HNRNP

A

B

C

FIGURE 4. Removing outliers removes local artifacts that may confound global signal.
(A) Figure shows splicing map of HNRNPC in HepG2 either including all events or excluding
outliers (defined as the top and bottom 2.5% of values at each position). (B) Genome browser
track shows an example outlier, HNRNPC HepG2 eCLIP read density at ACA24. (C ) Heatmaps
indicate normalized density tracks for all HNRNPC knockdown-excluded events (left) before
and (right) after removal of outliers.
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proteins (Fig. 4C). While keeping themiddle 95% of values
appears to work in removing these artifacts in most
ENCODE data sets, the (‐‐conf) parameter can be adjusted
to define an alternative outlier threshold. Although this was
more critical in generating reliable maps using the relative
information metric, we found that it also tended to
decrease noise when using the background-subtraction
method as well.

Choice of background events for comparison

Interpretation of a splicing map requires the use of some
sort of background control in order to contrast binding of
the RBP around RBP-responsive exons to a set of nonre-
sponsive ones.Many studies have indicated that the typical
alternative exon is fundamentally different from a typical
constitutively spliced exon, with altered exon and intron
size, weaker 5′ and 3′ splice sites, higher sequence conser-
vation, and higher RBP binding (Yeo et al. 2005). Thus,
although the process of selection of these background
events is often treated as so basic as to not warrant further
discussion in publications, wehave found that the selection
of a proper background for comparison is essential for
proper interpretation. To explore the effect of comparison
against different event backgrounds, we generated five
sets of control exons: constitutive exons (which had no ex-
clusion observed in any of 29 scrambled shRNA control
RNA-seq data sets in HepG2 or 29 in K562), “native” cas-
sette exons that were AS under normal conditions (0.05<
inclusion <0.95 in at least half of control RNA-seq data
sets), and three subgroups of native events: “included na-
tive” (inclusion >0.67 in at least half of control data sets),
“central native” (0.33< inclusion<0.67 in at least half of
control data sets), and “excluded native” (inclusion<0.33
in at least half of control data sets).

As an example of the effect of background choice, we
considered the splicing regulatory maps of serine- and
arginine-rich splicing factor 1 (SRSF1). We observe that
SRSF1 eCLIP signal is higher at exons excluded upon
SRSF1 knockdown than those included upon SRSF1 knock-
down, consistent with its known role in exon inclusion (Fig.
5; Ibrahimet al. 2005; ZhouandFu2013).Next, considering
theSRSF1eCLIP signal at thesedifferent backgroundevent
lists, we observed a clear pattern where exons with higher
average inclusion (constitutive or native included groups)
had higher SRSF1 eCLIP signal, whereas those with lower
inclusion (native excluded) had far less SRSF1 eCLIP signal.
Further, we observed that whereas exons excluded upon
SRSF1 knockdown had higher SRSF1 eCLIP signal relative
to anyof the four cassette exonclasses, theyhadequivalent
SRSF1 signal to constitutive exons (Fig. 5). This clearly dem-
onstrates the impact of background choice, as if the back-
ground selected was largely composed of constitutive
exonsonemight believe thatSRSF1 is unchangedat knock-
down-excludedevents,whereas theuseof anativecassette

exon background indicates enriched SRSF1 binding at
knockdown-excluded events. As the latter conclusion is
better supported by the differences between alternative
and constitutive exons more broadly as well as previous
knowledge about the exon inclusion promoting the role
of SRSF1, we believe (based on this and other examples)
that using a background of native alternative exons is pre-
ferred in nearly all situations.

Statistical significance models

Once the proper background has been selected, RBP-
Maps can test up to two conditions (i.e., significantly includ-
ed and significantly excluded cassette events) and show
position-wise significance against an indicated back-
ground using the ‐‐sigtest and ‐‐bgnum options (which se-
lect the 0-indexed number order corresponding to the
events to test and the set of events to use as a background,
respectively). Differentmodels areused for thepeak-based
and density-based approaches. For peak-based maps, a
Fisher’s exact test is used at each position along the
meta-event to test whether the fraction of events with a
peak at that event is significantly altered relative to the se-
lected background using the “‐‐sigtest fisher” option (Fig.
6A). For density-based maps, users can perform a Kolmo-
gorov–Smirnov test (‐‐sigtest ks), which provides users a
way to visualize significance as a heatmap of P-values
(Fig. 6B). However, we found that this test was not ideal
as it tended to yield false positive significance for data
sets with many altered events, and conversely was poor
at identifying positions (such as the +67 position for
RBFOX2) where many events showed no change but a

FIGURE 5. Choice of background affects interpretation of splicing
maps. Lines indicate average normalized eCLIP signal at SRSF1 (red)
knockdown-included and (blue) knockdown-excluded cassette exon
events against four controls: constitutive exons (with no exclusion
reads across multiple control RNA-seq data sets), native cassette ex-
ons with 0.05<percent spliced in (Ψ) < 0.95 in at least half of
ENCODE control RNA-seq data sets, and subsets of native cassette
exons with average Ψ<0.33 (excluded), 0.33<Ψ<0.67 (central),
and Ψ>0.67 (included) in ENCODE control RNA-seq data sets.
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subset showed dramatic change (Fig. 6B). Therefore, we
implemented an additional nonparametric test (‐‐sigtest
permutation) by performing a random sampling (n=
1000) of a chosen background (typically the native cassette

exon set). This allows users to generate confidence bounds
and significance based on a null distribution of samples of
alternative events, which better captures the true variability
in signal (Fig. 6C).

A

B

C

FIGURE 6. Significance models for splicing maps based on peak versus read density. (A) Schematic shows calculation of significance for peak-
based splicing maps. (Left) Peak positions are mapped across a set of significantly altered events (data shown are for exons excluded upon
RBFOX2 knockdown in HepG2 cells). (Center) At each position, a Fisher’s exact (or equivalent) test is performed between this set and some
control set (e.g., native cassette exons; see further discussion in Fig. 5). (Right) Resulting significance can be plotted for all positions in the splic-
ing map for (blue) knockdown-excluded or (red) knockdown-included events. Significance is shown on a −log10 scale. (B) Significance calcula-
tion for read density maps using Kolmogorov–Smirnov test. (Left) Normalized density is calculated for all knockdown-excluded events. (Center)
At each position, the distribution of normalized density is compared between knockdown-excluded and a control (native cassette exons). (Right)
Region-wide results are summarized similar to A. (C ) A bootstrapping strategy identifies confidence intervals for the control event list. (Left)
Normalized density is identified for the set of native cassette exons. (Center top) For each of 1000 permutations, a random sample of events
is chosen (matching the number of knockdown-excluded events) and used to generate an average density map. (Center bottom) Average maps
are collected for all 1000 permutations and sorted at each position to identify 0.5% and 99.5% confidence bounds for the final map. (Right)
Native cassette exon density maps (along with confidence window) are then plotted along with maps identified from knockdown-excluded
and included events.
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Whole-reads versus 5′′′′′ read ends

During CLIP, reverse transcriptase enzymes often termi-
nate at the site of protein–RNA crosslinking, which causes
the 5′ end of reads to correspond to the site of RBP–RNA
interaction (with some variability due to the positioning of
available crosslinkable amino acids and bases within the
binding site) (König et al. 2010; Van Nostrand et al.
2017b). Thus, an additional advantage to the use of
read density is the ability to utilize these crosslink-diag-
nostic events to improve the resolution of the resulting
splicing map (König et al. 2010; Wang et al. 2010). To
test this, we re-generated splicing maps using just the
5′ ends of each read, and observed variable results de-
pending on the RBP. For example, we observed a signifi-
cant increase in resolution in the splicing map for U2AF2,
which resolved specifically to the intronic 3′ splice site
region as opposed to overlapping the alternative exon
(Fig. 7). However, for other RBPs (even those such as
RBFOX2, which has previously been shown to crosslink
directly to its in vitro binding motif [Weyn-Vanhentenryck
et al. 2014]) we observed that using 5′ read ends yielded
a similar structure with dramatically increased noise rela-
tive to using whole-reads (Fig. 7). Thus, these results sug-
gest that this method can improve resolution for some
RBPs (particularly those with highly specific splice site-

proximal binding), but that factors with broader crosslink-
ing and binding patterns may suffer an unacceptable loss
of signal.

DISCUSSION

The ability to profile both RNA processing and RBP as-
sociation transcriptome-wide in vivo has revolutionized
our ability to study the mechanisms of RNA processing.
Integration of in vivo RBP targets identified by methods
such as CLIP and RBP-responsive targets by knockdown
or over-expression followed by RNA-seq or microarray,
coupled with bioinformatics analysis techniques, has en-
abled themapping of position-dependent regulatory prin-
ciples for RBPs. For alternative splicing, this is typically
referred to as a “RNA splicing map,” which visualizes the
average binding signal across RBP-responsive AS events
to simply summarize the role of that RBP on splicing regu-
lation. Althoughmany tools have been described to imple-
ment this approach, we found that incorporation of paired
input data sets generated as part of eCLIP profiling re-
quired additional optimization. Therefore, we developed
the RBP-Maps software package to enable users to imple-
ment a variety of normalization techniques and optimiza-
tions we observed to improve analysis of the ENCODE
data resource.

Although this work focuses on describing the use of
RBP-Maps (and the associated options) with respect to
mapping the position-specific effect of RBP association
on splicing regulation, the same approaches can be di-
rectly applied to position-specific regulation of 3′ or 5′

end processing, RNA stability and translation, or any other
aspect of RNA processing regulated by RBPs. For exam-
ple, polyadenylation analysis implicated splicing regulator
NOVA in regulation of alternative polyadenylation (Licata-
losi et al. 2008) and recently yielded insight into how bind-
ing of TARDBP/TDP43 shows differential regulation of
alternative polyadenylation based on whether binding is
close to, or further downstream from, a potential polyade-
nylation site (Rot et al. 2017). As it becomes easier to
directly assay translation rates, RNA half-lives, and other
aspects of RNA processing transcriptome-wide under
RBP-modifying conditions, such RNA processing maps
are likely to yield further insights into the complex regula-
tory code of RBP association.

MATERIALS AND METHODS

Identification of significantly altered splicing events

Data sets used included 203 RBPs with both eCLIP and knock-
down/RNA-seq performed in the same cell type and released by
the ENCODE project at https://www.encodeproject.org (Sup-
plemental Table S1; Van Nostrand et al. 2017a). AS events were
identified from rMATS JunctionCountsOnly files obtained from

FIGURE 7. 5′ read-based splice maps improve resolution of binding
for some RBPs. Shown are splicing maps for (top) U2AF2 HepG2
eCLIP signal at exons excluded upon U2AF2 knockdown in HepG2
cells or (bottom) RBFOX2 HepG2 eCLIP signal at exons excluded
upon RBFOX2 knockdown in HepG2 cells. Splicing maps were gener-
ated (red) using the entire read (as in previous figures), or (blue) using
the 5′ terminal position of reads only.
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theENCODEDCC (seeaccession identifier ENCSR413YAF for list-
ings of all rMATS output files). Significant AS events were defined
as having a P-value >0.05, FDR>0.1 and change in exon inclusion
level (also referred to as Percent Spliced In or |ΔΨ|) > 0.05. Elimina-
tion of overlapping splicing events was performed by identifying
groups of overlapping AS events and selecting the event with
the highest IJC among the overlapped events using the bedtools
(v2.26) commandmerge (-o collapse -c 4) andpybedtools (v0.7.9).
Positive IncLevelDifference (ΔΨ) indicates that the SE is more in-
cluded upon RBP knockdown, while negative ΔΨ indicates that
the exon is more excluded.

Generation of control events

A number of background references for cassette exon compari-
sons were generated, including: “constitutive” cassette exons de-
fined as exons inGENCODEv19which hadnoexclusionobserved
in anyof 29 scrambled shRNAcontrol RNA-seqdata sets inHepG2
or 29 in K562 (7351 events in HepG2 and 7888 in K562); “native”
cassette exonsdefined as exons inGENCODEv19with 0.05<Ψ<
0.95 in at least half of control shRNARNA-seqdata sets for that cell
type (1805 events in HepG2 and 2222 in K562); “included native”
with inclusion> 0.67 in at least half of control data sets (1137
events in HepG2 and 1451 in K562); “central native” with 0.33<
inclusion< 0.67 in at least half of control data sets (256 events in
HepG2 and 292 in K562); and “excluded native” with inclusion
<0.33 in at least half of control data sets (357 events in HepG2
and 439 in K562). All numbers reflect events remaining after re-
moving overlapping events as described above.

Splice map generation

Multiple approaches to generating RBP splicing maps were test-
ed. For all methods, eCLIP signal (either read density or peak
presence) was first identified for 350 nt windows flanking the rel-
evant exon/intron boundaries, extending amaximumof 50 nt into
each exon and 300 nt into each intron. For shorter exons (<100 nt)
and introns (<600 nt), signal was only counted until the boundary
of the neighboring feature. For cassette (skipped) exons, the rel-
evant regions included the upstream, cassette, and downstream
exon, creating four windows: the 3′ end of the upstream exon,
the 5′ end of the cassette exon, the 3′ end of the cassette exon,
and the 5′ end of the downstream exon, resulting in a total vector-
ized region of 1400 nt (350×4).

For peak-based splicing maps, each position within each vec-
torized region was marked as 1 if it was within a peak (requiring
P-value≤0.001 and fold-enrichment≥ 8 in IP versus input), and
0 otherwise. These values are then summed and divided by the
total number of events at each position to obtain the final splicing
map. For Figure 2F, peaks with relaxed thresholds of fold-enrich-
ment≥ 2 were also used.

For read density-based methods, IP and input read density
(normalized as RPM uniquely mapped, non-PCR duplicate reads)
was identified at each position within the cassette exon region de-
scribed above. For the background subtraction approach, input
sample read density was subtracted from IP sample read density
to result in difference values at every position through the event
region. These values were then normalized in order to equally
weigh each event by dividing the value at each position by the

sum of absolute values across all 1400 positions (plus a pseudo-
count of one read, normalized to RPM, at each position) to obtain
the normalized enrichment profiles for each event. For the relative
information approach, per-position information was calculated
using the equation

pi × log2
pi

qi

( )
,

where pi and qi are the per-position read probabilities at a given
coordinate for IP and size matched input, respectively. To conser-
vatively address positions with zero reads in either IP or input, a
pseudocount of one read (normalized to total input read number)
was added to each position before calculating IP and input read
probabilities. Then, for both background subtraction and relative
information approaches, values at each base across all events
were sorted, removing the highest (2.5%) and lowest (2.5%) out-
lier values before calculating the mean across all events that is
shown as the final splicing map.
To generate 5′ end splicing maps, density of 5′ read ends were

identified using genomeCoverageBed (bedtools v2.26). Read
end coverage was then used as input to the above pipeline, in-
cluding background subtraction, outlier removal, and averaging
across all events.

Modeling significance between RBP-responsive
and native events

Significance tests for peak-based maps were computed using the
fisher_exact() function based on a 2×2 contingency table at each
position i based on four conditions: RBP-responsive events with
peak at position i, RBP-responsive events without peak at position
i, native events with peak at position i, and native events without
peak at position i.
Significance and confidence intervals for read density-based

approaches were performed in two ways. For overall significance,
a Kolmogorov–Smirnov test was performed comparing the outli-
er-removed normalized values for RBP-responsive events versus
native events at each position using stats.ks_2samp() (Python
scipy.stats module v1.1.0). To calculate significance and confi-
dence intervals based on a bootstrapping approach, a random
sample (with replacement) of n background events was selected,
where n is the number of significant AS events in the test condi-
tion. These events then underwent outlier removal by filtering
the top and bottom 2.5% of values, followed by calculating the
mean at each position across all random events. This was repeat-
ed 1000 times to create a distribution of randomly sampled native
event means at each position. By default, the 0.5th and 99.5th
percentile values at each position were used to identify positions
where RBP-responsive event maps were significantly different
than native events. When multiple test conditions are present
(e.g., included events and excluded events), this approach was
performed separately for each, yielding a “max” and “min” value
for each condition. For visualization of both knockdown-included
and knockdown-excluded splicing maps on the same plot, the
highest “max” and lowest “min” value was conservatively used
to visualize error boundaries.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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